A350759 a(n) = Sum_{k=0..n} (-1)^k*A345652(k)*Stirling1(n, k).
1, 0, -1, 1, 1, -4, 1, 29, -167, 1000, -7989, 75857, -794639, 9058180, -111944923, 1492748581, -21369667087, 326932765840, -5323818187817, 91947960224097, -1678914212753599, 32317295442288844, -654084630476955479, 13886774070229667213
Offset: 0
Keywords
Examples
a(9) = -Sum_{k=0..7} a(k)*A238363(8, k). a(9) = -(1*(-5040) + 0*(5760) - 1*(-3360) + 1*(1344) + 1*(-420) - 4*(112) + 1*(-28) + 29*(8)) = 1000. E.g.f.: 1 - x^2/2! + x^3/3! + x^4/4! - 4*x^5/5! + x^6/6! + 29*x^7/7! - 167*x^8/8! + 1000*x^9/9! + ...
Programs
-
Maple
b := proc(n) option remember; `if`(n=0, 1, add((n-1)*binomial(n-2, k)*(-1)^(n-1-k)*b(k), k=0..n-2)) end: a := n-> add((-1)^k*b(k)*Stirling1(n, k), k=0..n): seq(a(n), n=0..23); # Second program: a := proc(n) option remember; `if`(n=0, 1, add((n-2-k)!*binomial(n-1, k)*(-1)^(n-1-k)*a(k), k=0..n-2)) end: seq(a(n), n=0..23); # Third program: a := series(exp(-1+(1+x)*(1-log(1+x))), x=0, 24): seq(n!*coeff(a, x, n), n=0..23); # Fourth program: A350759 := n-> add(binomial(n, k)*(n-k)!*coeftayl(x^(-x), x=1, n-k), k=0..n): seq(A350759 (n), n=0..23); # Mélika Tebni, Mar 31 2022
-
Mathematica
CoefficientList[Series[Exp[-1+(1+x)*(1-Log[1+x])], {x, 0, 23}], x] * Range[0, 23]!
-
PARI
my(x='x+O('x^30)); Vec(serlaplace(exp(-1 + (1 + x)*(1 - log(1 + x))))) \\ Michel Marcus, Jan 14 2022
-
Python
from math import comb, factorial def a(n): return 1 if n == 0 else sum([factorial(n-2-k)*comb(n-1, k)*(-1)**(n-1-k)*a(k) for k in range(n-1)]) print([a(n) for n in range(24)])
Formula
a(0) = 1, a(n) = -Sum_{k=0..n-2} a(k)*A238363(n-1, k) for n > 0.
a(0) = 1, a(n) = Sum_{k=0..n-2} (n-2-k)!*binomial(n-1, k)*(-1)^(n-1-k)*a(k) for n > 0.
E.g.f.: exp(-1 + (1 + x)*(1 - log(1 + x))).
E.g.f. y(x) satisfies y' + y*log(1 + x) = 0.
a(n) = Sum_{k=0..n} binomial(n, k)*A176118(n-k). - Mélika Tebni, Mar 31 2022
a(n) ~ -(-1)^n * n! * exp(-1) / n^2 * (1 - 2*log(n)/n). - Vaclav Kotesovec, Mar 31 2022
Comments