cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345675 Numbers m such that D_{m-1} is the smallest base b > 1 for which b^{m-1} == 1 (mod m), where D_k is the denominator (A027642) of Bernoulli number B_k.

Original entry on oeis.org

35, 14315, 22399, 35711, 455891, 881809, 1198159, 1917071, 2287987, 3310037, 4464941, 11029439, 12190061, 13325753, 17832803, 33012941, 33296147, 37814849, 44986423, 74437181, 76911149, 82873661, 91909571, 98859851, 108266171, 128008159, 128981243, 132391409
Offset: 1

Views

Author

Thomas Ordowski, Sep 04 2021

Keywords

Comments

These are numbers m such that A027642(m-1) = A105222(m).
The corresponding bases of these pseudoprimes are 6, 6, 42, 66, 66, 46410, 3318, 66, 42, 30, 330, 6, 330, 61410, 6, 330, 1074, 510, 3318, 330, 7890, 330, 66, 12606, 66, 42, 6, 510, ...

Crossrefs

Programs

  • Mathematica
    Den[n_] := Times @@ (1 + Select[Divisors[n], PrimeQ[# + 1] &]); q[k_] := Module[{m = 2, d = Den[k - 1]}, If[PowerMod[d, k - 1, k] != 1, False, While[m < d && PowerMod[m, k - 1, k] != 1, m++]; m == d]]; Select[Range[3, 10^6, 2], q] (* Amiram Eldar, Sep 04 2021 *)
  • PARI
    f(n) = my(m=2); while(Mod(m, n)^(n-1)!=1, m++); m;
    isok(m) = f(m) == denominator(bernfrac(m-1)); \\ Michel Marcus, Sep 04 2021

Extensions

More terms from Amiram Eldar, Sep 04 2021