A345675 Numbers m such that D_{m-1} is the smallest base b > 1 for which b^{m-1} == 1 (mod m), where D_k is the denominator (A027642) of Bernoulli number B_k.
35, 14315, 22399, 35711, 455891, 881809, 1198159, 1917071, 2287987, 3310037, 4464941, 11029439, 12190061, 13325753, 17832803, 33012941, 33296147, 37814849, 44986423, 74437181, 76911149, 82873661, 91909571, 98859851, 108266171, 128008159, 128981243, 132391409
Offset: 1
Keywords
Programs
-
Mathematica
Den[n_] := Times @@ (1 + Select[Divisors[n], PrimeQ[# + 1] &]); q[k_] := Module[{m = 2, d = Den[k - 1]}, If[PowerMod[d, k - 1, k] != 1, False, While[m < d && PowerMod[m, k - 1, k] != 1, m++]; m == d]]; Select[Range[3, 10^6, 2], q] (* Amiram Eldar, Sep 04 2021 *)
-
PARI
f(n) = my(m=2); while(Mod(m, n)^(n-1)!=1, m++); m; isok(m) = f(m) == denominator(bernfrac(m-1)); \\ Michel Marcus, Sep 04 2021
Extensions
More terms from Amiram Eldar, Sep 04 2021
Comments