A345704 Zumkeller numbers k (A083207) such that the next Zumkeller number is k + 12.
282, 840, 1596, 1794, 1920, 2496, 2928, 3108, 3522, 3540, 3594, 4008, 4188, 4602, 4620, 4998, 5268, 5862, 6060, 6708, 6888, 7086, 7788, 7968, 8382, 8400, 9048, 9840, 10362, 10542, 10920, 11100, 11568, 12126, 12162, 12180, 13422, 14106, 14322, 14394, 14880, 15348
Offset: 1
Keywords
Examples
282 is a term since it is a Zumkeller number, and the next Zumkeller number is 282 + 12 = 294.
Links
- Robert Israel, Table of n, a(n) for n = 1..648
- Robert Gerbicz, A083207 On an observation of Frank Buss, posts to the SeqFan list, July 2010.
- Pankaj Jyoti Mahanta, Manjil P. Saikia and Daniel Yaqubi, Some properties of Zumkeller numbers and k-layered numbers, Journal of Number Theory, Vol. 217 (2020), pp. 218-236.
Programs
-
Maple
iszum:= proc(n) local D,s,P,d; D:= numtheory:-divisors(n); s:= convert(D,`+`); if s::odd then return false fi; P:= mul(1+x^d,d=D); coeff(P,x,s/2) > 0 end proc: last:= 6: R:= NULL: count:= 0: for i from 7 while count < 60 do if iszum(i) then if i-last = 12 then R:= R, last; count:= count+1 fi; last:= i; fi od: R; # Robert Israel, Feb 13 2023
-
Mathematica
zumQ[n_] := Module[{d = Divisors[n], sum, x}, sum = Plus @@ d; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; z = Select[Range[5000], zumQ]; z[[Position[Differences[z], 12] // Flatten]]
-
Python
from itertools import count, islice from sympy import divisors def A345704_gen(startvalue=1): # generator of terms >= startvalue m = -20 for n in count(max(startvalue,1)): d = divisors(n) s = sum(d) if s&1^1 and n<<1<=s: d = d[:-1] s2, ld = (s>>1)-n, len(d) z = [[0 for in range(s2+1)] for in range(ld+1)] for i in range(1, ld+1): y = min(d[i-1], s2+1) z[i][:y] = z[i-1][:y] for j in range(y,s2+1): z[i][j] = max(z[i-1][j],z[i-1][j-y]+y) if z[i][s2] == s2: if m == n-12: yield m m = n break A345704_list = list(islice(A345704_gen(),10)) # Chai Wah Wu, Feb 13 2023
Comments