A345731 Additive bases: a(n) is the least integer such that there is an n-element set of integers between 0 and a(n), the sums of pairs (of distinct elements) of which are distinct.
1, 2, 4, 7, 12, 18, 24, 34, 45, 57, 71, 86, 105, 126, 148
Offset: 2
Examples
a(6)=12 because 0-1-2-4-7-12 (0-5-8-10-11-12) resp. 0-1-2-6-9-12 (0-3-6-10-11-12) are shortest weak Sidon sets of size 6. a(16)=148: [0, 3, 5, 6, 32, 49, 59, 68, 93, 106, 118, 126, 130, 134, 141, 148]. - _Zhao Hui Du_, Jul 27 2025
References
- Alison M. Marr and W. D. Wallis, Magic Graphs, Birkhäuser, 2nd ed., 2013. See Section 2.3.
- Xiaodong Xu, Meilian Liang, and Zehui Shao, On weak Sidon sequences, The Journal of Combinatorial Mathematics and Combinatorial Computing (2014), 107--113
Links
- A. Lladó, Largest cliques in connected supermagic graphs, European Journal of Combinatorics, Vol. 28, No. 8 (2007), 2240-2247.
Programs
-
Mathematica
a[n_Integer?NonNegative] := Module[{k = n - 1}, While[SelectFirst[Subsets[Range[0, k - 1], {n - 1}], Length@Union[Plus @@@ Subsets[#~Join~{k}, {2}]] >= (n*(n - 1))/2 &] === Missing["NotFound"], k++]; k]; Table[a[n], {n, 2, 8}] (* Robert P. P. McKone, Nov 05 2023 *)
-
Python
from itertools import combinations, count def a(n): for k in count(n-1): for c in combinations(range(k), n-1): c = c + (k,) ss = set() for s in combinations(c, 2): if sum(s) in ss: break else: ss.add(sum(s)) if len(ss) == n*(n-1)//2: return k # use (k, c) for sets print([a(n) for n in range(2, 9)]) # Michael S. Branicky, Jun 25 2021
Extensions
a(16) corrected and a(17) deleted by Zhao Hui Du, Jul 27 2025
Comments