A345740 a(n) is the least prime p such that Omega(p + n) = n where Omega is A001222, or 0 if no such prime exists.
2, 2, 5, 131, 43, 15619, 281, 6553, 503, 137771, 3061, 244140613, 8179, 22143361, 401393, 199290359, 491503, 8392333984357, 524269, 3486784381, 2097131, 226640986043, 28311529, 303745269775390601, 113246183, 9885033776809, 469762021, 176518460300597, 805306339, 77737724676061053405079339
Offset: 1
Keywords
Examples
For n=1, a(1) = 2 as 2+1 = 3 (Omega(2 + 1) = Omega(3) = 1, see A000040(1)). For n=2, 2+2 = 4 = 2*2 (semiprime, Omega(4) = 2, see A001358(1)). For n=3, 5+3 = 8 = 2*2*2 (triprime, Omega(8) = 3, see A014612(1)). For n=4, 131+4 = 135 = 3*3*3*5 (Omega(135) = 4, see A014613(16)).
Links
- David A. Corneth, Table of n, a(n) for n = 1..1049
Programs
-
Mathematica
Table[k=1;While[PrimeOmega[Prime@k+n]!=n,k++];Prime@k,{n,11}] (* Giorgos Kalogeropoulos, Jun 25 2021 *)
-
PARI
a(n) = my(p=2); while (bigomega(p+n) != n, p = nextprime(p+1)); p; \\ Michel Marcus, Jun 26 2021
-
Python
from sympy import factorint, nextprime, primerange def Omega(n): return sum(e for f, e in factorint(n).items()) def a(n): lb = 2**n p = nextprime(max(lb-n, 1) - 1) while Omega(p+n) != n: p = nextprime(p) return p print([a(n) for n in range(1, 12)]) # Michael S. Branicky, Aug 14 2021
Formula
a(n) + n >= A053669(n)^n for n > 2 if a(n) exists. - David A. Corneth, Aug 14 2021