cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345740 a(n) is the least prime p such that Omega(p + n) = n where Omega is A001222, or 0 if no such prime exists.

Original entry on oeis.org

2, 2, 5, 131, 43, 15619, 281, 6553, 503, 137771, 3061, 244140613, 8179, 22143361, 401393, 199290359, 491503, 8392333984357, 524269, 3486784381, 2097131, 226640986043, 28311529, 303745269775390601, 113246183, 9885033776809, 469762021, 176518460300597, 805306339, 77737724676061053405079339
Offset: 1

Views

Author

Zak Seidov, Jun 25 2021

Keywords

Examples

			For n=1, a(1) = 2 as 2+1 = 3 (Omega(2 + 1) = Omega(3) = 1, see A000040(1)).
For n=2, 2+2 = 4 = 2*2 (semiprime, Omega(4) = 2, see A001358(1)).
For n=3, 5+3 = 8 = 2*2*2 (triprime, Omega(8) = 3, see A014612(1)).
For n=4, 131+4 = 135 = 3*3*3*5 (Omega(135) = 4,  see A014613(16)).
		

Crossrefs

Programs

  • Mathematica
    Table[k=1;While[PrimeOmega[Prime@k+n]!=n,k++];Prime@k,{n,11}] (* Giorgos Kalogeropoulos, Jun 25 2021 *)
  • PARI
    a(n) = my(p=2); while (bigomega(p+n) != n, p = nextprime(p+1)); p; \\ Michel Marcus, Jun 26 2021
    
  • Python
    from sympy import factorint, nextprime, primerange
    def Omega(n): return sum(e for f, e in factorint(n).items())
    def a(n):
        lb = 2**n
        p = nextprime(max(lb-n, 1) - 1)
        while Omega(p+n) != n: p = nextprime(p)
        return p
    print([a(n) for n in range(1, 12)]) # Michael S. Branicky, Aug 14 2021

Formula

a(n) + n >= A053669(n)^n for n > 2 if a(n) exists. - David A. Corneth, Aug 14 2021