cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A345762 E.g.f.: Product_{k>=1} (1 - x^k)^(1/k!).

Original entry on oeis.org

1, -1, -1, 2, 0, 29, -135, 727, -1967, -6074, 94510, 1548051, -41361089, 408842095, 213929807, -41951737904, 130060640466, 10569226878107, -229371598130229, 3327344803563111, -31418096993670379, -383829978086171112, 17799865170898698140, 220582224147105677385
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1-x^k)^(1/k!))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, (exp(x^k)-1)/k))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, sumdiv(k, d, 1/(d-1)!)*x^k/k))))
    
  • PARI
    a(n) = if(n==0, 1, -(n-1)!*sum(k=1, n, sumdiv(k, d, 1/(d-1)!)*a(n-k)/(n-k)!));

Formula

E.g.f.: exp( -Sum_{k>=1} (exp(x^k) - 1)/k ).
E.g.f.: exp( -Sum_{k>=1} A087906(k)*x^k/k! ).
a(n) = -(n-1)! * Sum_{k=1..n} (Sum_{d|k} 1/(d-1)!) * a(n-k)/(n-k)! for n > 0.

A345756 E.g.f.: Product_{k>=1} 1/(1 - (exp(x) - 1)^k)^(1/k!).

Original entry on oeis.org

1, 1, 4, 20, 132, 1057, 10036, 110168, 1369395, 19009207, 291638340, 4898978911, 89387432140, 1760380295559, 37222139393757, 841009071062929, 20219172890524757, 515336552717107810, 13879978696592456136, 393920374851547833518, 11749388855614114735431
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Comments

Stirling transform of A209902.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-(exp(x)-1)^k)^(1/k!))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, (exp((exp(x)-1)^k)-1)/k))))

Formula

E.g.f.: exp( Sum_{k>=1} (exp((exp(x) - 1)^k) - 1)/k ).
a(n) = Sum_{k=0..n} Stirling2(n,k) * A209902(k).

A345757 E.g.f.: Product_{k>=1} (1 + (exp(x) - 1)^k)^(1/k!).

Original entry on oeis.org

1, 1, 2, 8, 34, 137, 614, 3754, 25449, 82747, -1523792, -34833005, -335209288, 194665837, 59685834069, 715582325511, -10186972407657, -584687267399246, -10975484551366964, 8845584310341044, 8145484883568515927, 330326712925212377392, 7816903733527799885488
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Comments

Stirling transform of A298906.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1+(exp(x)-1)^k)^(1/k!))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, (-1)^(k+1)*(exp((exp(x)-1)^k)-1)/k))))

Formula

E.g.f.: exp( Sum_{k>=1} (-1)^(k+1) * (exp((exp(x) - 1)^k) - 1)/k ).
a(n) = Sum_{k=0..n} Stirling2(n,k) * A298906(k).
Showing 1-3 of 3 results.