cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A298906 Expansion of e.g.f. Product_{k>=1} (1 + x^k)^(1/k!).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 77, 29, -4289, -14836, 283812, 1316855, -16548717, -292820579, 911200565, 52594983250, 100157634380, -3444629077653, 7961210574683, -2170805244559295, -41176659971108705, 348776485253486302, 35663019455311634058, 513993485453689440281
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 18 2018

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 2*x^4/4! + x^5/5! + 77*x^6/6! + ... = (1 + x) * (1 + x^2)^(1/2!) * (1 + x^3)^(1/3!) * (1 + x^4)^(1/4!) * ...
		

Crossrefs

Programs

  • Maple
    a:=series(exp(add((-1)^(k+1)*(exp(x^k)-1)/k,k=1..100)),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[Sum[(-1)^(k + 1) (Exp[x^k] - 1)/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1)/(d - 1)!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 23}]

Formula

E.g.f.: exp(Sum_{k>=1} (-1)^(k+1)*(exp(x^k) - 1)/k).
E.g.f.: Product_{k>=1} B(x^k)^((-1)^(k+1)/k), where B(x) = exp(exp(x) - 1) = e.g.f. of Bell numbers (A000110).

A345758 E.g.f.: Product_{k>=1} (1 - (exp(x) - 1)^k)^(1/k!).

Original entry on oeis.org

1, -1, -2, -2, 4, 63, 448, 2490, 14733, 109151, 790418, 5861623, 91442844, 1857444743, 27708811583, 336714649323, 6016551711313, 167673369006642, 4183443404331446, 82140898773966502, 1493427665082817617, 37403762698805913754, 1340432910567030307828
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2021

Keywords

Comments

Stirling transform of A345762.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1-(exp(x)-1)^k)^(1/k!))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, (exp((exp(x)-1)^k)-1)/k))))

Formula

E.g.f.: exp( -Sum_{k>=1} (exp((exp(x) - 1)^k) - 1)/k ).
a(n) = Sum_{k=0..n} Stirling2(n,k) * A345762(k).

A346039 Expansion of e.g.f. Product_{k>=1} exp(1 - exp(x^k))^(1/k!).

Original entry on oeis.org

1, -1, -1, 3, 1, 17, -119, 165, 1191, -21989, 169527, -317837, -7182779, 54452161, 292654649, -4320853051, -46883217705, 728176373539, 9943868087879, -166076498591597, -2748733072385043, 65290726021558089, 151614363753006601, -11661992771499644571
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2021

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, exp(1-exp(x^k))^(1/k!))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, (1-exp(x^k))/k!))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, sumdiv(k, d, 1/(d!*(k/d)!))*x^k))))
    
  • PARI
    a(n) = if(n==0, 1, -(n-1)!*sum(k=1, n, k*sumdiv(k, d, 1/(d!*(k/d)!))*a(n-k)/(n-k)!));

Formula

E.g.f.: exp( Sum_{k>=1} (1 - exp(x^k))/k! ).
E.g.f.: exp( -Sum_{k>=1} A121860(k)*x^k/k! ).
a(n) = -(n-1)! * Sum_{k=1..n} k * (Sum_{d|k} 1/(d! * (k/d)!)) * a(n-k)/(n-k)! for n > 0.
Showing 1-3 of 3 results.