A345774 Numbers that are the sum of seven cubes in exactly two ways.
131, 159, 166, 173, 185, 192, 211, 236, 243, 257, 264, 269, 274, 276, 288, 290, 292, 295, 299, 300, 302, 307, 309, 311, 314, 320, 321, 325, 332, 333, 337, 339, 340, 344, 348, 351, 353, 355, 358, 359, 360, 363, 372, 384, 385, 386, 388, 389, 393, 395, 398, 403
Offset: 1
Keywords
Examples
159 is a term because 159 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..355
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1, 1000)] for pos in cwr(power_terms, 7): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 2]) for x in range(len(rets)): print(rets[x])
Comments