cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345774 Numbers that are the sum of seven cubes in exactly two ways.

Original entry on oeis.org

131, 159, 166, 173, 185, 192, 211, 236, 243, 257, 264, 269, 274, 276, 288, 290, 292, 295, 299, 300, 302, 307, 309, 311, 314, 320, 321, 325, 332, 333, 337, 339, 340, 344, 348, 351, 353, 355, 358, 359, 360, 363, 372, 384, 385, 386, 388, 389, 393, 395, 398, 403
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345520 at term 8 because 222 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3.
Likely finite.

Examples

			159 is a term because 159 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])