cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A048930 Numbers that are the sum of 6 positive cubes in exactly 2 ways.

Original entry on oeis.org

158, 165, 184, 228, 235, 247, 256, 261, 268, 273, 275, 280, 282, 284, 287, 291, 294, 306, 310, 313, 317, 324, 331, 332, 343, 345, 347, 350, 352, 362, 371, 373, 376, 378, 380, 385, 387, 388, 392, 395, 399, 404, 406, 408, 418, 425, 430, 432, 436, 437, 441
Offset: 1

Views

Author

Keywords

Comments

It appears that this sequence has 1094 terms, the last of which is 21722. - Donovan Johnson, Jan 09 2013

Examples

			158 is in the sequence since 158 = 64+64+27+1+1+1 = 125+8+8+8+8+1.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 500, n++, pr = Select[ PowersRepresentations[n, 6, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 2, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)
  • PARI
    mx=10^6; ct=vector(mx); cb=vector(99); for(i=1, 99, cb[i]=i^3); for(i1=1, 99, s1=cb[i1]; for(i2=i1, 99, s2=s1+cb[i2]; if(s2+4*cb[i2]>mx, next(2)); for(i3=i2, 99, s3=s2+cb[i3]; if(s3+3*cb[i3]>mx, next(2)); for(i4=i3, 99, s4=s3+cb[i4]; if(s4+2*cb[i4]>mx, next(2)); for(i5=i4, 99, s5=s4+cb[i5]; if(s5+cb[i5]>mx, next(2)); for(i6=i5, 99, s6=s5+cb[i6]; if(s6>mx, next(2)); ct[s6]++)))))); n=0; for(i=6, mx, if(ct[i]==2, n++; write("b048930.txt", n " " i))) /* Donovan Johnson, Jan 09 2013 */

Extensions

Terms corrected by Donovan Johnson, Jan 09 2013

A345824 Numbers that are the sum of seven fourth powers in exactly two ways.

Original entry on oeis.org

262, 277, 292, 307, 342, 357, 372, 422, 437, 502, 517, 532, 547, 597, 612, 677, 772, 787, 852, 886, 901, 916, 966, 981, 1027, 1046, 1141, 1156, 1221, 1362, 1377, 1396, 1442, 1510, 1525, 1557, 1572, 1587, 1590, 1617, 1637, 1652, 1717, 1765, 1812, 1827, 1892
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345568 at term 61.

Examples

			277 is a term because 277 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A345520 Numbers that are the sum of seven cubes in two or more ways.

Original entry on oeis.org

131, 159, 166, 173, 185, 192, 211, 222, 229, 236, 243, 248, 255, 257, 262, 264, 269, 274, 276, 281, 283, 285, 288, 290, 292, 295, 299, 300, 302, 307, 309, 311, 314, 318, 320, 321, 325, 332, 333, 337, 339, 340, 344, 346, 348, 351, 353, 355, 358, 359, 360, 363
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			159 is a term because 159 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345775 Numbers that are the sum of seven cubes in exactly three ways.

Original entry on oeis.org

222, 229, 248, 255, 262, 281, 283, 285, 318, 346, 370, 374, 377, 379, 381, 396, 400, 407, 412, 419, 426, 433, 437, 438, 444, 451, 463, 472, 475, 477, 489, 494, 501, 505, 507, 510, 522, 529, 533, 536, 559, 564, 566, 568, 570, 577, 578, 584, 585, 592, 594, 596
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345521 at term 28 because 470 = 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 = 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3.
Likely finite.

Examples

			229 is a term because 229 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A345784 Numbers that are the sum of eight cubes in exactly two ways.

Original entry on oeis.org

132, 139, 158, 160, 167, 174, 181, 186, 193, 195, 197, 200, 212, 216, 219, 238, 244, 251, 258, 265, 272, 277, 288, 296, 298, 300, 301, 303, 307, 314, 315, 317, 321, 322, 327, 328, 329, 333, 334, 336, 338, 340, 341, 348, 350, 352, 356, 359, 360, 361, 363, 366
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345532 at term 16 because 223 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3.
Likely finite.

Examples

			139 is a term because 139 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A345773 Numbers that are the sum of seven cubes in exactly one way.

Original entry on oeis.org

7, 14, 21, 28, 33, 35, 40, 42, 47, 49, 54, 56, 59, 61, 66, 68, 70, 73, 75, 77, 80, 84, 85, 87, 91, 92, 94, 96, 98, 99, 103, 105, 106, 110, 111, 112, 113, 117, 118, 122, 124, 125, 129, 132, 133, 136, 137, 138, 140, 143, 144, 145, 147, 148, 150, 151, 152, 154
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A003330 at term 44 because 131 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
Likely finite.

Examples

			14 is a term because 14 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.