A345814 Numbers that are the sum of six fourth powers in exactly two ways.
261, 276, 291, 341, 356, 421, 516, 531, 596, 771, 885, 900, 965, 1140, 1361, 1509, 1556, 1571, 1636, 1811, 2180, 2596, 2611, 2661, 2691, 2706, 2721, 2741, 2756, 2771, 2786, 2836, 2931, 2946, 2961, 3011, 3026, 3091, 3186, 3201, 3220, 3266, 3285, 3300, 3315
Offset: 1
Keywords
Examples
276 is a term because 276 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 2]) for x in range(len(rets)): print(rets[x])
Comments