cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A048930 Numbers that are the sum of 6 positive cubes in exactly 2 ways.

Original entry on oeis.org

158, 165, 184, 228, 235, 247, 256, 261, 268, 273, 275, 280, 282, 284, 287, 291, 294, 306, 310, 313, 317, 324, 331, 332, 343, 345, 347, 350, 352, 362, 371, 373, 376, 378, 380, 385, 387, 388, 392, 395, 399, 404, 406, 408, 418, 425, 430, 432, 436, 437, 441
Offset: 1

Views

Author

Keywords

Comments

It appears that this sequence has 1094 terms, the last of which is 21722. - Donovan Johnson, Jan 09 2013

Examples

			158 is in the sequence since 158 = 64+64+27+1+1+1 = 125+8+8+8+8+1.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 500, n++, pr = Select[ PowersRepresentations[n, 6, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 2, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)
  • PARI
    mx=10^6; ct=vector(mx); cb=vector(99); for(i=1, 99, cb[i]=i^3); for(i1=1, 99, s1=cb[i1]; for(i2=i1, 99, s2=s1+cb[i2]; if(s2+4*cb[i2]>mx, next(2)); for(i3=i2, 99, s3=s2+cb[i3]; if(s3+3*cb[i3]>mx, next(2)); for(i4=i3, 99, s4=s3+cb[i4]; if(s4+2*cb[i4]>mx, next(2)); for(i5=i4, 99, s5=s4+cb[i5]; if(s5+cb[i5]>mx, next(2)); for(i6=i5, 99, s6=s5+cb[i6]; if(s6>mx, next(2)); ct[s6]++)))))); n=0; for(i=6, mx, if(ct[i]==2, n++; write("b048930.txt", n " " i))) /* Donovan Johnson, Jan 09 2013 */

Extensions

Terms corrected by Donovan Johnson, Jan 09 2013

A344237 Numbers that are the sum of five fourth powers in exactly two ways.

Original entry on oeis.org

260, 275, 340, 515, 884, 1555, 2595, 2660, 2675, 2690, 2705, 2755, 2770, 2835, 2930, 2945, 3010, 3185, 3299, 3314, 3379, 3554, 3923, 3970, 3985, 4050, 4115, 4145, 4160, 4210, 4290, 4355, 4400, 4465, 4594, 4769, 4834, 5075, 5090, 5155, 5265, 5330, 5395, 5440, 5505, 5570, 5699, 6370, 6545, 6580, 6595, 6660, 6675
Offset: 1

Views

Author

David Consiglio, Jr., May 12 2021

Keywords

Comments

Differs from A344237 at term 31 because 4225 = 2^4 + 2^4 + 2^4 + 3^4 + 8^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4

Examples

			340 is a member of this sequence because 340 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 2])
    for x in range(len(rets)):
        print(rets[x])

A345559 Numbers that are the sum of six fourth powers in two or more ways.

Original entry on oeis.org

261, 276, 291, 341, 356, 421, 516, 531, 596, 771, 885, 900, 965, 1140, 1361, 1509, 1556, 1571, 1636, 1811, 2180, 2596, 2611, 2661, 2676, 2691, 2706, 2721, 2741, 2756, 2771, 2786, 2836, 2851, 2916, 2931, 2946, 2961, 3011, 3026, 3091, 3186, 3201, 3220, 3266
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			276 is a term because 276 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345815 Numbers that are the sum of six fourth powers in exactly three ways.

Original entry on oeis.org

2676, 2851, 2916, 4131, 4226, 4241, 4306, 4371, 4481, 4850, 5346, 5411, 5521, 5586, 5651, 6561, 6611, 6756, 6771, 6801, 6821, 6836, 6851, 6931, 7106, 7235, 7475, 7491, 7666, 7841, 7906, 7971, 8146, 8211, 8321, 8386, 8451, 8531, 8706, 9011, 9156, 9171, 9186
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345560 at term 18 because 6626 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.

Examples

			2851 is a term because 2851 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A345824 Numbers that are the sum of seven fourth powers in exactly two ways.

Original entry on oeis.org

262, 277, 292, 307, 342, 357, 372, 422, 437, 502, 517, 532, 547, 597, 612, 677, 772, 787, 852, 886, 901, 916, 966, 981, 1027, 1046, 1141, 1156, 1221, 1362, 1377, 1396, 1442, 1510, 1525, 1557, 1572, 1587, 1590, 1617, 1637, 1652, 1717, 1765, 1812, 1827, 1892
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345568 at term 61.

Examples

			277 is a term because 277 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A346357 Numbers that are the sum of six fifth powers in exactly two ways.

Original entry on oeis.org

4098, 4129, 4340, 5121, 7222, 11873, 20904, 36865, 51447, 51478, 51509, 51689, 51720, 51931, 52470, 52501, 52712, 53493, 54571, 54602, 54813, 55594, 57695, 59222, 59253, 59464, 60245, 62346, 63146, 66997, 67586, 68253, 68284, 68495, 68906, 68937, 69148, 69276
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345507 at term 231 because 696467 = 1^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 = 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 13^5 = 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 13^5.

Examples

			4098 is a term because 4098 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A345813 Numbers that are the sum of six fourth powers in exactly one ways.

Original entry on oeis.org

6, 21, 36, 51, 66, 81, 86, 96, 101, 116, 131, 146, 161, 166, 181, 196, 211, 226, 246, 306, 321, 326, 336, 371, 386, 401, 406, 436, 451, 466, 486, 501, 546, 561, 576, 581, 611, 626, 630, 641, 645, 660, 661, 675, 676, 690, 691, 705, 706, 710, 725, 740, 755, 756
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A003340 at term 20 because 261 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 = 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4.

Examples

			21 is a term because 21 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.