cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A342686 Numbers that are the sum of five fifth powers in exactly two ways.

Original entry on oeis.org

4097, 51446, 51477, 51688, 52469, 54570, 59221, 68252, 68905, 84213, 110494, 131104, 151445, 212496, 300277, 325174, 325713, 355114, 422135, 422738, 589269, 637418, 794434, 810820, 876734, 876765, 876976, 877757, 879858, 884509, 893540, 909501, 924912, 935782, 976733, 995571, 1037784, 1083457
Offset: 1

Views

Author

David Consiglio, Jr., May 18 2021

Keywords

Comments

This sequence differs from A342685:
13124675 = 1^5 + 9^5 + 10^5 + 20^5 + 25^5
= 2^5 + 5^5 + 12^5 + 23^5 + 23^5
= 16^5 + 19^5 + 20^5 + 20^5 + 20^5,
so 13124675 is in A342685, but is not in this sequence.

Examples

			51477 = 2^5 + 4^5 + 7^5 + 7^5 + 7^5
      = 2^5 + 5^5 + 6^5 + 6^5 + 8^5
so 51477 is a term of this sequence.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 500)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 2])
    for x in range(len(rets)):
        print(rets[x])

A345814 Numbers that are the sum of six fourth powers in exactly two ways.

Original entry on oeis.org

261, 276, 291, 341, 356, 421, 516, 531, 596, 771, 885, 900, 965, 1140, 1361, 1509, 1556, 1571, 1636, 1811, 2180, 2596, 2611, 2661, 2691, 2706, 2721, 2741, 2756, 2771, 2786, 2836, 2931, 2946, 2961, 3011, 3026, 3091, 3186, 3201, 3220, 3266, 3285, 3300, 3315
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345559 at term 25 because 2676 = 1^4 + 1^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.

Examples

			276 is a term because 276 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A346358 Numbers that are the sum of six fifth powers in exactly three ways.

Original entry on oeis.org

696467, 893572, 1100264, 1109295, 1165727, 1711776, 2007401, 2025309, 2221767, 2801812, 3047519, 3310494, 3360608, 3550866, 3559556, 3576120, 3807122, 3907101, 4055922, 4093540, 4096114, 4104067, 4123363, 4135578, 4155107, 4195571, 4222339, 4326784, 4417112
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345604 at term 105 because 12047994 = 7^5 + 9^5 + 12^5 + 14^5 + 17^5 + 25^5 = 5^5 + 10^5 + 13^5 + 15^5 + 16^5 + 25^5 = 1^5 + 1^5 + 3^5 + 4^5 + 21^5 + 24^5 = 4^5 + 6^5 + 15^5 + 15^5 + 21^5 + 23^5.

Examples

			696467 is a term because 696467 = 1^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 = 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 13^5 = 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 13^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A345507 Numbers that are the sum of six fifth powers in two or more ways.

Original entry on oeis.org

4098, 4129, 4340, 5121, 7222, 11873, 20904, 36865, 51447, 51478, 51509, 51689, 51720, 51931, 52470, 52501, 52712, 53493, 54571, 54602, 54813, 55594, 57695, 59222, 59253, 59464, 60245, 62346, 63146, 66997, 67586, 68253, 68284, 68495, 68906, 68937, 69148, 69276
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4129 is a term because 4129 = 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 = 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A346279 Numbers that are the sum of seven fifth powers in exactly two ways.

Original entry on oeis.org

4099, 4130, 4161, 4341, 4372, 4583, 5122, 5153, 5364, 6145, 7223, 7254, 7465, 8246, 10347, 11874, 11905, 12116, 12897, 14998, 19649, 20905, 20936, 21147, 21928, 24029, 28680, 36866, 36897, 37108, 37711, 37889, 39990, 40138, 44641, 51393, 51448, 51479, 51510
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345605 at term 156 because 84457 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5.

Examples

			4099 is a term because 4099 = 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A346356 Numbers that are the sum of six fifth powers in exactly one way.

Original entry on oeis.org

6, 37, 68, 99, 130, 161, 192, 248, 279, 310, 341, 372, 403, 490, 521, 552, 583, 614, 732, 763, 794, 825, 974, 1005, 1029, 1036, 1060, 1091, 1122, 1153, 1184, 1216, 1247, 1271, 1302, 1333, 1364, 1395, 1458, 1513, 1544, 1575, 1606, 1755, 1786, 1817, 1997, 2028
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A003351 at term 93 because 4098 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.

Examples

			6 is a term because 6 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.