cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003351 Numbers that are the sum of 6 positive 5th powers.

Original entry on oeis.org

6, 37, 68, 99, 130, 161, 192, 248, 279, 310, 341, 372, 403, 490, 521, 552, 583, 614, 732, 763, 794, 825, 974, 1005, 1029, 1036, 1060, 1091, 1122, 1153, 1184, 1216, 1247, 1271, 1302, 1333, 1364, 1395, 1458, 1513, 1544, 1575, 1606, 1755, 1786, 1817, 1997, 2028, 2052
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
90185 is in the sequence as 90185 = 2^5 + 6^5 + 6^5 + 6^5 + 6^5 + 9^5.
104636 is in the sequence as 104636 = 1^5 + 3^5 + 3^5 + 4^5 + 5^5 + 10^5.
151173 is in the sequence as 151173 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 9^5. (End)
		

Crossrefs

A342685 Numbers that are the sum of five fifth powers in two or more ways.

Original entry on oeis.org

4097, 51446, 51477, 51688, 52469, 54570, 59221, 68252, 68905, 84213, 110494, 131104, 151445, 212496, 300277, 325174, 325713, 355114, 422135, 422738, 589269, 637418, 794434, 810820, 876734, 876765, 876976, 877757, 879858, 884509, 893540, 909501, 924912, 935782, 976733, 995571, 1037784, 1083457
Offset: 1

Views

Author

David Consiglio, Jr., May 17 2021

Keywords

Examples

			51477 = 2^5 + 4^5 + 7^5 + 7^5 + 7^5
      = 2^5 + 5^5 + 6^5 + 6^5 + 8^5
so 51477 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 500)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 2])
    for x in range(len(rets)):
        print(rets[x])

A345559 Numbers that are the sum of six fourth powers in two or more ways.

Original entry on oeis.org

261, 276, 291, 341, 356, 421, 516, 531, 596, 771, 885, 900, 965, 1140, 1361, 1509, 1556, 1571, 1636, 1811, 2180, 2596, 2611, 2661, 2676, 2691, 2706, 2721, 2741, 2756, 2771, 2786, 2836, 2851, 2916, 2931, 2946, 2961, 3011, 3026, 3091, 3186, 3201, 3220, 3266
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			276 is a term because 276 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345604 Numbers that are the sum of six fifth powers in three or more ways.

Original entry on oeis.org

696467, 893572, 1100264, 1109295, 1165727, 1711776, 2007401, 2025309, 2221767, 2801812, 3047519, 3310494, 3360608, 3550866, 3559556, 3576120, 3807122, 3907101, 4055922, 4093540, 4096114, 4104067, 4123363, 4135578, 4155107, 4195571, 4222339, 4326784, 4417112
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			893572 is a term because 893572 = 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 = 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 = 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345605 Numbers that are the sum of seven fifth powers in two or more ways.

Original entry on oeis.org

4099, 4130, 4161, 4341, 4372, 4583, 5122, 5153, 5364, 6145, 7223, 7254, 7465, 8246, 10347, 11874, 11905, 12116, 12897, 14998, 19649, 20905, 20936, 21147, 21928, 24029, 28680, 36866, 36897, 37108, 37711, 37889, 39990, 40138, 44641, 51393, 51448, 51479, 51510
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4130 is a term because 4130 = 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 = 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A346357 Numbers that are the sum of six fifth powers in exactly two ways.

Original entry on oeis.org

4098, 4129, 4340, 5121, 7222, 11873, 20904, 36865, 51447, 51478, 51509, 51689, 51720, 51931, 52470, 52501, 52712, 53493, 54571, 54602, 54813, 55594, 57695, 59222, 59253, 59464, 60245, 62346, 63146, 66997, 67586, 68253, 68284, 68495, 68906, 68937, 69148, 69276
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345507 at term 231 because 696467 = 1^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 = 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 13^5 = 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 13^5.

Examples

			4098 is a term because 4098 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.