A345817 Numbers that are the sum of six fourth powers in exactly five ways.
15395, 16610, 18866, 19235, 19410, 20996, 21011, 21316, 21331, 21491, 21620, 23811, 25091, 29700, 29715, 29906, 29955, 30356, 30995, 31235, 31266, 31331, 31506, 32035, 33651, 33795, 33891, 35171, 35411, 35636, 35796, 35971, 37971, 38595, 38675, 39266, 39890
Offset: 1
Keywords
Examples
16610 is a term because 16610 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 10^4 = 2^4 + 2^4 + 2^4 + 5^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 10^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 = 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 5]) for x in range(len(rets)): print(rets[x])
Comments