cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346049 a(0) = ... = a(4) = 1; a(n) = Sum_{k=1..n-5} a(k) * a(n-k-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 2, 3, 4, 4, 4, 6, 10, 16, 24, 30, 37, 50, 74, 116, 175, 245, 332, 456, 654, 981, 1471, 2146, 3056, 4320, 6203, 9119, 13540, 19986, 29134, 42113, 61047, 89398, 132021, 195272, 287547, 421235, 616418, 905161, 1335648, 1976407, 2922982, 4313230
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = a[3] = a[4] = 1; a[n_] := a[n] = Sum[a[k] a[n - k - 5], {k, 1, n - 5}]; Table[a[n], {n, 0, 48}]
    nmax = 48; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 + x^5 A[x] (A[x] - 1) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • SageMath
    @CachedFunction
    def a(n): # a = A346049
        if (n<5): return 1
        else: return sum(a(k)*a(n-k-5) for k in range(1,n-4))
    [a(n) for n in range(51)] # G. C. Greubel, Nov 28 2022

Formula

G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 * A(x) * (A(x) - 1).