cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A346047 a(0) = a(1) = a(2) = 1; a(n) = Sum_{k=1..n-3} a(k) * a(n-k-3).

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 2, 2, 4, 8, 10, 13, 24, 42, 61, 90, 156, 265, 410, 646, 1093, 1834, 2948, 4789, 8050, 13475, 22129, 36570, 61435, 103039, 171384, 286156, 481691, 810502, 1359194, 2284789, 3856974, 6512001, 10982193, 18550116, 31406597, 53194727, 90082902
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = 1; a[n_] := a[n] = Sum[a[k] a[n - k - 3], {k, 1, n - 3}]; Table[a[n], {n, 0, 42}]
    nmax = 42; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 A[x] (A[x] - 1) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 * A(x) * (A(x) - 1).
a(n) ~ sqrt((3 - 3*r^3 - 4*r^4 - 2*r^5)/(8*Pi)) / (n^(3/2) * r^(n+3)), where r = 0.5701490701528437821032230160646366013461622472504286581627... is the root of the equation 1 - 2*r^3 - 4*r^4 - 4*r^5 + r^6 = 0. - Vaclav Kotesovec, Jul 03 2021

A346048 a(0) = ... = a(3) = 1; a(n) = Sum_{k=1..n-4} a(k) * a(n-k-4).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 3, 3, 3, 5, 9, 15, 19, 24, 35, 59, 95, 137, 191, 280, 445, 706, 1071, 1575, 2357, 3663, 5755, 8890, 13483, 20518, 31759, 49658, 77267, 119135, 183523, 284793, 444883, 694798, 1080865, 1679142, 2616399, 4092497, 6408249, 10021176, 15657643
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 02 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, 1,
          add(a(j)*a(n-4-j), j=1..n-4))
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Jul 03 2021
  • Mathematica
    a[0] = a[1] = a[2] = a[3] = 1; a[n_] := a[n] = Sum[a[k] a[n - k - 4], {k, 1, n - 4}]; Table[a[n], {n, 0, 45}]
    nmax = 45; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 A[x] (A[x] - 1) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 * A(x) * (A(x) - 1).

A346077 a(n) = 1 + Sum_{k=1..n-5} a(k) * a(n-k-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 12, 18, 26, 36, 49, 69, 101, 150, 221, 320, 460, 667, 981, 1456, 2161, 3191, 4698, 6932, 10283, 15324, 22870, 34103, 50813, 75770, 113229, 169590, 254340, 381579, 572537, 859511, 1291681, 1943489, 2926980, 4410709, 6649220, 10028570
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 5], {k, 1, n - 5}]; Table[a[n], {n, 0, 47}]
    nmax = 47; A[] = 0; Do[A[x] = 1/(1 - x) + x^5 A[x] (A[x] - 1) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • SageMath
    @CachedFunction
    def a(n): # a = A346077
        if (n<6): return 1
        else: return 1 + sum(a(k)*a(n-k-5) for k in range(1,n-4))
    [a(n) for n in range(51)] # G. C. Greubel, Nov 27 2022

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^5 * A(x) * (A(x) - 1).
Showing 1-3 of 3 results.