cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346054 Number of ways to tile a 3 X n strip with dominoes and L-shaped 5-minoes.

Original entry on oeis.org

1, 0, 3, 8, 13, 52, 119, 308, 873, 2184, 5867, 15552, 40581, 107836, 283871, 748076, 1976545, 5208784, 13743315, 36260088, 95627773, 252289476, 665499975, 1755466916, 4630903129, 12215645848, 32223689915, 85003275440, 224228961909, 591494654412, 1560303157679
Offset: 0

Views

Author

Greg Dresden and Ziyao Geng, Jul 02 2021

Keywords

Examples

			Here are two such tilings for a 3 X 3 strip; each has four rotations thus demonstrating that a(3)=8.
  ._____.  ._____.
  | | | |  | |___|
  | |_|_|  | |___|
  |_____|  |_____|
For a 3 X 4 strip, here are three of the possible a(4)=13 tilings.
  ._______.  ._______.  ._______.
  | |___  |  |  ___| |  |___|___|
  | |___| |  | |___| |  | |___| |
  |_____|_|  |_|_____|  |_|___|_|
For a 3 X 5 strip, here are three of the possible a(5)=52 tilings.
  ._________.  ._________.  ._________.
  | | |___| |  |  ___|___|  | |___|___|
  | |_|___|_|  | | |___| |  | |___|___|
  |_____|___|  |_|_|___|_|  |_____|___|
		

Crossrefs

Cf. A052980.

Programs

  • Magma
    I:=[1,0,3,8]; [n le 4 select I[n] else Self(n-1) +3*Self(n-2) +5*Self(n-3) -4*Self(n-4): n in [1..50]]; // G. C. Greubel, Dec 01 2022
    
  • Mathematica
    LinearRecurrence[{1, 3, 5, -4}, {1, 0, 3, 8}, 50];
  • SageMath
    @CachedFunction
    def a(n): # a = A346054
        if (n<4): return (1,0,3,8)[n]
        else: return a(n-1) + 3*a(n-2) + 5*a(n-3) - 4*a(n-4)
    [a(n) for n in range(51)] # G. C. Greubel, Dec 01 2022

Formula

a(n) = a(n-1) + 3*a(n-2) + 5*a(n-3) - 4*a(n-4).
G.f.: (1 - x)/(1 - x - 3*x^2 - 5*x^3 + 4*x^4).

Extensions

Corrected by Greg Dresden, Sep 04 2021