A346054 Number of ways to tile a 3 X n strip with dominoes and L-shaped 5-minoes.
1, 0, 3, 8, 13, 52, 119, 308, 873, 2184, 5867, 15552, 40581, 107836, 283871, 748076, 1976545, 5208784, 13743315, 36260088, 95627773, 252289476, 665499975, 1755466916, 4630903129, 12215645848, 32223689915, 85003275440, 224228961909, 591494654412, 1560303157679
Offset: 0
Examples
Here are two such tilings for a 3 X 3 strip; each has four rotations thus demonstrating that a(3)=8. ._____. ._____. | | | | | |___| | |_|_| | |___| |_____| |_____| For a 3 X 4 strip, here are three of the possible a(4)=13 tilings. ._______. ._______. ._______. | |___ | | ___| | |___|___| | |___| | | |___| | | |___| | |_____|_| |_|_____| |_|___|_| For a 3 X 5 strip, here are three of the possible a(5)=52 tilings. ._________. ._________. ._________. | | |___| | | ___|___| | |___|___| | |_|___|_| | | |___| | | |___|___| |_____|___| |_|_|___|_| |_____|___|
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Greg Dresden and Michael Tulskikh, Tilings of 2 X n boards with dominos and L-shaped trominos, Journal of Integer Sequences 24 (2021), article 21.4.5.
- Index entries for linear recurrences with constant coefficients, signature (1,3,5,-4).
Crossrefs
Cf. A052980.
Programs
-
Magma
I:=[1,0,3,8]; [n le 4 select I[n] else Self(n-1) +3*Self(n-2) +5*Self(n-3) -4*Self(n-4): n in [1..50]]; // G. C. Greubel, Dec 01 2022
-
Mathematica
LinearRecurrence[{1, 3, 5, -4}, {1, 0, 3, 8}, 50];
-
SageMath
@CachedFunction def a(n): # a = A346054 if (n<4): return (1,0,3,8)[n] else: return a(n-1) + 3*a(n-2) + 5*a(n-3) - 4*a(n-4) [a(n) for n in range(51)] # G. C. Greubel, Dec 01 2022
Formula
a(n) = a(n-1) + 3*a(n-2) + 5*a(n-3) - 4*a(n-4).
G.f.: (1 - x)/(1 - x - 3*x^2 - 5*x^3 + 4*x^4).
Extensions
Corrected by Greg Dresden, Sep 04 2021