cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346071 a(n) is the smallest number m such that m^3 = x^3 + y^3 + z^3, x > y > z > 0, has at least n different solutions.

Original entry on oeis.org

6, 18, 54, 87, 108, 174, 174, 324, 324, 324, 492, 492, 492, 984, 984, 1296, 1296, 1296, 1440, 1440, 2592, 2592, 2592, 2592, 3960, 3960, 3960, 3960, 4320, 4320, 4320, 5760, 5940, 5940, 5940, 5940, 5940, 5940, 8640, 9900, 9900, 9900, 11880, 11880, 11880, 11880, 11880
Offset: 1

Views

Author

Sebastian Magee, Jul 30 2021

Keywords

Comments

a(n) is the smallest number for which there are at least n sets of positive integers (b_i, c_i, d_i) i=1..n which satisfy the equation a(n)^3 = b_i^3 + c_i^3 + d_i^3.
This sequence is related to Euler's sum of powers conjecture. In particular to the case k=3, a(n) is the smallest number that has at least n different solutions to the equation.
The sequences of numbers whose cubes can be expressed as the sum of 3 positive cubes in at least n ways for n = 1, 2, 3, ... form a family of related sequences. This sequence is the sequence of first terms in that family of sequences.
The first of this family is A023042.

Examples

			a(1) = 6 because 6^3 = 5^3 + 4^3 + 3^3; 6 = a(1) = A023042(1).
a(2) = 18 because 18^3 = 15^3 + 12^3 + 9^3 = 16^3 + 12^3 + 2^3.
a(3) = 54 because 54^3 = 45^3 + 36^3 + 27^3 = 48^3 + 36^3 + 6^3 = 53^3 + 19^3 + 12^3.
		

Crossrefs

Programs

  • Python
    import numpy as np
    def residual(a,b,c,d, exp=3):
        return a**exp-b**exp-c**exp-d**exp
    def test(max_n,k=3):
        ans=dict()
        for a in range(max_n):
            #print(a)
            for b in range(int(np.ceil((a**k/3)**(1/k))),a):
                n3=a**k-b**k
                for c in range(int(np.ceil((n3/2)**(1/k))),b):
                    m3=n3-c**k
                    if m3<0:
                        break;
                    l=int(np.ceil((m3)**(1/k)))
                    options=[l,l-1]
                    for d in options:
                        res=residual(a,b,c,d, exp=k)
                        if res==0:
                            if a in ans.keys():
                                ans[a].append((a,b,c,d))
                            else:
                                ans[a]=[(a,b,c,d)]
                            #print("found:",(a,b,c,d))
                            break
                        else:
                            #print("tested: {0}, residual: {1}".format((a,b,c,d),res))
                            if res>0:
                                break
        return ans
    def serie(N):
        result=test(N)
        results_by_number_of_answers=[]
        results_by_number_of_answers.append(result)
        temp=dict()
        for k in result.keys():
            if len(result[k])>=2:
                temp[k]=result[k]
        results_by_number_of_answers.append(temp)
        i=3
        while len(temp)>0:
            temp=dict()
            for k in results_by_number_of_answers[-1].keys():
                if len(results_by_number_of_answers[-1][k])>=i:
                    temp[k]=result[k]
            if len(temp)>0:
                results_by_number_of_answers.append(temp)
            i+=1
        return [next(iter(a)) for a in results_by_number_of_answers]
    #Get the elements of the serie up until A_n>1000
    A=serie(1000)
    print(A)
    
  • Python
    from itertools import combinations
    from collections import Counter
    from sympy import integer_nthroot
    def icbrt(n): return integer_nthroot(n, 3)[0]
    def aupto(mmax):
        cbs = [i**3 for i in range(mmax+1)]
        cbsset = set(cbs)
        c = Counter(sum(c) for c in combinations(cbs, 3) if sum(c) in cbsset)
        nmax = max(c.values())
        return [min(icbrt(s) for s in c if c[s] >= n) for n in range(1, nmax+1)]
    print(aupto(500)) # Michael S. Branicky, Sep 04 2021

Extensions

a(16)-a(31) from Jinyuan Wang, Aug 02 2021
More terms from David A. Corneth, Sep 04 2021