cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346074 a(n) = 1 + Sum_{k=0..n-5} a(k) * a(n-k-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 14, 21, 30, 41, 59, 89, 136, 205, 301, 443, 664, 1011, 1545, 2341, 3530, 5341, 8143, 12487, 19148, 29299, 44817, 68721, 105742, 163025, 251392, 387595, 597988, 924047, 1430167, 2215595, 3433788, 5323915, 8260652, 12829849
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 5], {k, 0, n - 5}]; Table[a[n], {n, 0, 44}]
    nmax = 44; A[] = 0; Do[A[x] = 1/(1 - x) + x^5 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k, k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Jan 22 2023

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^5 * A(x)^2.
Conjecture D-finite with recurrence (n+5)*a(n) +2*(-n-4)*a(n-1) +(n+3)*a(n-2) +2*(-2*n+5)*a(n-5) +4*(n-3)*a(n-6)=0. - R. J. Mathar, Feb 17 2022
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k,k) * Catalan(k). - Seiichi Manyama, Jan 22 2023