A346113 Base-10 numbers k whose number of divisors equals the number of divisors in R(k), where k is written in all bases from base-2 to base-10 and R(k), the digit reversal of k, is read as a number in the same base.
1, 9077, 10523, 10838, 30182, 58529, 73273, 77879, 83893, 244022, 303253, 303449, 304853, 329893, 332249, 334001, 334417, 335939, 336083, 346741, 374617, 391187, 504199, 512695, 516982, 595274, 680354, 687142, 758077, 780391, 792214, 854669, 946217, 948539, 995761, 1008487, 1377067, 1389341
Offset: 1
Examples
9077 is a term as the number of divisors of 9077 = tau(9077) = 4, and this equals the number of divisors of R(9077) when written and then read as a base-j number, with 2 <= j <= 10. See the table below for k = 9077. . base | k_base | R(k_base) | R(k_base)_10 | tau(R(k_base)_10) ---------------------------------------------------------------------------------- 2 | 10001101110101 | 10101110110001 | 11185 | 4 3 | 110110012 | 210011011 | 15421 | 4 4 | 2031311 | 1131302 | 6002 | 4 5 | 242302 | 203242 | 6697 | 4 6 | 110005 | 500011 | 38887 | 4 7 | 35315 | 51353 | 12533 | 4 8 | 21565 | 56512 | 23882 | 4 9 | 13405 | 50431 | 33157 | 4 10 | 9077 | 7709 | 7709 | 4
Links
- Scott R. Shannon, Table of n, a(n) for n = 1..1253
Crossrefs
Programs
-
Mathematica
Select[Range@100000,Length@Union@DivisorSigma[0,Join[{s=#},FromDigits[Reverse@IntegerDigits[s,#],#]&/@Range[2,10]]]==1&] (* Giorgos Kalogeropoulos, Jul 06 2021 *)
-
PARI
isok(k) = {my(t= numdiv(k)); for (b=2, 10, my(d=digits(k, b)); if (numdiv(fromdigits(Vecrev(d), b)) != t, return (0));); return(1);} \\ Michel Marcus, Jul 06 2021
Comments