cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346214 Triangular array read by rows. T(n,k) is the number of nilpotent n X n matrices over GF(2) with index k, 1 <= k <= n, n >= 1.

Original entry on oeis.org

1, 1, 3, 1, 21, 42, 1, 315, 1260, 2520, 1, 6975, 104160, 312480, 624960, 1, 373023, 23436000, 104993280, 314979840, 629959680, 1, 32252031, 9175162752, 121912197120, 426692689920, 1280078069760, 2560156139520, 1, 6619979775, 9978120069120, 421755245936640, 1989607056998400, 6963624699494400, 20890874098483200, 41781748196966400
Offset: 1

Views

Author

Geoffrey Critzer, Jul 10 2021

Keywords

Comments

The index of a nilpotent matrix A is the smallest positive integer k such that A^k = 0.
Define the co-index of an n X n matrix A to be n - index(A). Let X_n be the random variable that assigns to each nilpotent n X n matrix over GF(2) the value j in {0,1,...,n-1} of its co-index. Conjecture: lim_{n->inf} P(X_n = j) = Product_{i>=1}1-1/2^i * 2^((j-1)^2)/A002884(j). Moreover, for j < 2n, T(n,n-j) = A002884(n)/(A002884(j)*2^(n - (j-1)^2)). - Geoffrey Critzer, Jun 10 2025

Examples

			  1,
  1,    3,
  1,   21,     42,
  1,  315,   1260,   2520,
  1, 6975, 104160, 312480, 624960
		

Crossrefs

Cf. A083402 (main diagonal), A053763 (row sums), A002884, A048651.

Programs

  • Mathematica
    nn = 8;  q = 2;
    b[p_, i_] := Count[p, i];
    d[p_, i_] :=  Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];
    aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}];
    l = Level[Table[IntegerPartitions[n],  {n,  0,  nn}],  {2}];
    \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}];
    g[u_,  v_,  deg_,  partitions_] := Total[Map[v^If[# == {},  0,  Max[#]] u^(deg Total[#])/aut[deg,  #] &, partitions]];
    Map[Select[#,  # > 0 &] &, Drop[Table[\[Gamma][n,  q],  {n,  0,  nn}] CoefficientList[     Series[g[u,  v,  1,  l],  {u,  0,  nn}],  {u,  v}],  1]] // Grid

Extensions

More terms from Geoffrey Critzer, Jun 10 2025