A346214 Triangular array read by rows. T(n,k) is the number of nilpotent n X n matrices over GF(2) with index k, 1 <= k <= n, n >= 1.
1, 1, 3, 1, 21, 42, 1, 315, 1260, 2520, 1, 6975, 104160, 312480, 624960, 1, 373023, 23436000, 104993280, 314979840, 629959680, 1, 32252031, 9175162752, 121912197120, 426692689920, 1280078069760, 2560156139520, 1, 6619979775, 9978120069120, 421755245936640, 1989607056998400, 6963624699494400, 20890874098483200, 41781748196966400
Offset: 1
Examples
1, 1, 3, 1, 21, 42, 1, 315, 1260, 2520, 1, 6975, 104160, 312480, 624960
Programs
-
Mathematica
nn = 8; q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; l = Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}]; g[u_, v_, deg_, partitions_] := Total[Map[v^If[# == {}, 0, Max[#]] u^(deg Total[#])/aut[deg, #] &, partitions]]; Map[Select[#, # > 0 &] &, Drop[Table[\[Gamma][n, q], {n, 0, nn}] CoefficientList[ Series[g[u, v, 1, l], {u, 0, nn}], {u, v}], 1]] // Grid
Extensions
More terms from Geoffrey Critzer, Jun 10 2025
Comments