cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346259 Numbers that are the sum of seven fifth powers in exactly ten ways.

Original entry on oeis.org

134581976, 189642309, 219063107, 235438301, 252277376, 275782407, 300919884, 308188849, 309631268, 315635200, 327287951, 335530174, 342030094, 358852218, 379913293, 384699424, 387538625, 391133568, 395423876, 405307926, 421322507, 423673757, 425588250
Offset: 1

Views

Author

David Consiglio, Jr., Jul 12 2021

Keywords

Comments

Differs from A345643 at term 7 because 281935070 = 17^5 + 17^5 + 18^5 + 21^5 + 23^5 + 26^5 + 48^5 = 7^5 + 17^5 + 20^5 + 23^5 + 24^5 + 32^5 + 47^5 = 7^5 + 13^5 + 13^5 + 26^5 + 30^5 + 36^5 + 45^5 = 1^5 + 13^5 + 21^5 + 21^5 + 33^5 + 37^5 + 44^5 = 6^5 + 7^5 + 13^5 + 31^5 + 34^5 + 36^5 + 43^5 = 4^5 + 8^5 + 16^5 + 29^5 + 31^5 + 41^5 + 41^5 = 6^5 + 8^5 + 12^5 + 28^5 + 37^5 + 38^5 + 41^5 = 3^5 + 6^5 + 15^5 + 32^5 + 35^5 + 38^5 + 41^5 = 7^5 + 24^5 + 25^5 + 32^5 + 34^5 + 37^5 + 41^5 = 13^5 + 20^5 + 21^5 + 34^5 + 35^5 + 36^5 + 41^5 = 8^5 + 24^5 + 26^5 + 31^5 + 31^5 + 40^5 + 40^5.

Examples

			134581976 is a term because 134581976 = 1^5 + 14^5 + 17^5 + 18^5 + 26^5 + 31^5 + 39^5 = 1^5 + 1^5 + 10^5 + 12^5 + 19^5 + 35^5 + 38^5 = 8^5 + 11^5 + 12^5 + 17^5 + 27^5 + 33^5 + 38^5 = 3^5 + 12^5 + 12^5 + 21^5 + 28^5 + 32^5 + 38^5 = 4^5 + 11^5 + 13^5 + 22^5 + 24^5 + 36^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 24^5 + 36^5 + 36^5 = 1^5 + 4^5 + 21^5 + 21^5 + 29^5 + 34^5 + 36^5 = 1^5 + 8^5 + 14^5 + 23^5 + 32^5 + 32^5 + 36^5 = 6^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5 + 36^5 = 12^5 + 20^5 + 21^5 + 26^5 + 28^5 + 34^5 + 35^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])