A352299
Expansion of e.g.f. 1/(2 - exp(x) - x^3).
Original entry on oeis.org
1, 1, 3, 19, 123, 1021, 10683, 127093, 1725867, 26535613, 452307243, 8475606613, 173390108235, 3842119808749, 91675559886459, 2343875745873493, 63920729617231275, 1852126733351677021, 56823327291638414667, 1840195730889731550805
Offset: 0
-
m = 19; Range[0, m]! * CoefficientList[Series[1/(2 - Exp[x] - x^3), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-x^3)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (1+(k==m)*m!)*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 3);
A352300
Expansion of e.g.f. 1/(2 - exp(x) - x^4).
Original entry on oeis.org
1, 1, 3, 13, 99, 781, 7563, 84253, 1103595, 16074589, 260443083, 4630046653, 90017588235, 1894771249021, 42957132108075, 1043136555486493, 27024421701469995, 743851294350730141, 21679544916491784843, 666932347454809048189
Offset: 0
-
m = 19; Range[0, m]! * CoefficientList[Series[1/(2 - Exp[x] - x^4), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-x^4)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (1+(k==m)*m!)*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 4);
A352302
Expansion of e.g.f. 1/(exp(x) - x^2).
Original entry on oeis.org
1, -1, 3, -13, 73, -521, 4441, -44185, 502545, -6429169, 91393201, -1429101521, 24378097129, -450504733849, 8965682806809, -191174795868841, 4348171177591201, -105077942935229537, 2688685949077138657, -72618903735812907553, 2064598911185525708601
Offset: 0
-
m = 20; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - x^2), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-x^2)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (-1+(k==m)*m!)*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 2);
A352306
Expansion of e.g.f. 1/(2 - exp(x) - x^2/2).
Original entry on oeis.org
1, 1, 4, 19, 129, 1071, 10743, 125455, 1675439, 25167073, 420070323, 7712503173, 154475622513, 3351859639363, 78324320723561, 1960968388497523, 52368881358012435, 1485952518531483045, 44643697199669589447, 1415782273405809697009
Offset: 0
-
m = 19; Range[0, m]! * CoefficientList[Series[1/(2 - Exp[x] - x^2/2), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-x^2/2)))
-
b(n, m) = if(n==0, 1, sum(k=1, n, (1+(k==m))*binomial(n, k)*b(n-k, m)));
a(n) = b(n, 2);
Showing 1-4 of 4 results.