A346364 Numbers that are the sum of six fifth powers in exactly nine ways.
9085584992, 16933805856, 37377003050, 39254220544, 41066625600, 41485873792, 42149876800, 43828403850, 44180505600, 45902654525, 48588434400, 52005184992, 53536896864, 54156285568, 56229189632, 57088402525, 59954496800, 63432407850, 66188522400, 66507304800
Offset: 1
Keywords
Examples
9085584992 = 24^5 + 38^5 + 42^5 + 48^5 + 54^5 + 96^5 = 21^5 + 34^5 + 38^5 + 43^5 + 74^5 + 92^5 = 8^5 + 34^5 + 38^5 + 62^5 + 68^5 + 92^5 = 18^5 + 18^5 + 44^5 + 64^5 + 66^5 + 92^5 = 13^5 + 18^5 + 51^5 + 64^5 + 64^5 + 92^5 = 8^5 + 38^5 + 41^5 + 47^5 + 79^5 + 89^5 = 5^5 + 23^5 + 29^5 + 45^5 + 85^5 + 85^5 = 8^5 + 23^5 + 41^5 + 64^5 + 82^5 + 84^5 = 12^5 + 18^5 + 38^5 + 72^5 + 78^5 + 84^5, so 9085584992 is a term.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..549
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**5 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 9]) for x in range(len(rets)): print(rets[x])
Comments