cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346467 a(n) is the least common multiple of the divisors d of n-1 such that d+1 is prime; a(1) = 1.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 4, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 20, 1, 22, 1, 12, 1, 2, 1, 28, 1, 30, 1, 16, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 44, 1, 46, 1, 48, 1, 10, 1, 52, 1, 18, 1, 28, 1, 58, 1, 60, 1, 2, 1, 16, 1, 66, 1, 4, 1, 70, 1, 72, 1, 2, 1, 4, 1, 78, 1, 80, 1, 82, 1, 84, 1, 2, 1, 88, 1, 90, 1, 92, 1, 2, 1, 96
Offset: 1

Views

Author

Antti Karttunen and Thomas Ordowski, Jul 22 2021

Keywords

Comments

Original definition: a(n) is the least common multiple of p-1 computed over all primes p for which p-1 is a divisor of n-1; a(1) = 1.

Crossrefs

Programs

  • Maple
    f:= proc(n)
      if n::even then return 1 fi;
      ilcm(op(select(d -> isprime(d+1), numtheory:-divisors(n-1))));
    end proc:
    f(1):= 1:
    map(f, [$1..200]); # Robert Israel, Aug 30 2021
  • Mathematica
    {1}~Join~Array[CarmichaelLambda@ Denominator@ BernoulliB@ # &, 96] (* Michael De Vlieger, Jul 22 2021 *)
  • PARI
    A346467(n) = if(1==n,n,my(m=1); fordiv(n-1,d,if(isprime(1+d),m = lcm(m,d))); (m));
    
  • PARI
    apply( {A346467(n)=if(n>1, lcm([d|d<-divisors(n-1),isprime(d+1)]), 1)}, [1..99]) \\ M. F. Hasler, Nov 23 2021

Formula

a(n) = A002322(A027642(n-1)).
a(n) = A346466(n) * A346481(n).
For n > 1, a(n) = (n-1) / A346468(n).
a(n) = LCM { d | n-1; d+1 is prime }, where "|" means "divides". - M. F. Hasler, Nov 23 2021