A346510 a(n) is the number of nontrivial divisors of A346507(n) ending with 1.
1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2
Offset: 1
Examples
a(42) = 4 since there are 4 nontrivial divisors of A346507(42) = 2541 ending with 1: 11, 21, 121 and 231.
Crossrefs
Programs
-
Mathematica
b={}; For[n=1, n<=500, n++, For[k=1, k
Max[b], AppendTo[b, 10n+1]]]]; (* A346507 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#, 10]==1&)], -1]]-1]]; a -
PARI
f(n) = sumdiv(n, d, (d>1) && (d
(f(x)), [1..5000])) \\ Michel Marcus, Jul 28 2021 -
Python
from sympy import divisors def f(n): return sum(d%10 == 1 for d in divisors(n)[1:-1]) def A346507upto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10))) print(list(map(f, A346507upto(5000)))) # Michael S. Branicky, Jul 31 2021