A092403
a(n) = sigma(n) + sigma(n+1).
Original entry on oeis.org
4, 7, 11, 13, 18, 20, 23, 28, 31, 30, 40, 42, 38, 48, 55, 49, 57, 59, 62, 74, 68, 60, 84, 91, 73, 82, 96, 86, 102, 104, 95, 111, 102, 102, 139, 129, 98, 116, 146, 132, 138, 140, 128, 162, 150, 120, 172, 181, 150, 165, 170, 152, 174, 192, 192, 200, 170, 150, 228, 230
Offset: 1
-
Total/@Partition[DivisorSigma[1,Range[70]],2,1] (* Harvey P. Dale, Feb 19 2018 *)
-
for(i=1,60,print1(","sigma(i)+sigma(i+1)))
A340423
Irregular triangle read by rows T(n,k) in which row n has length A000041(n-1) and every column k is A024916, n >= 1, k >= 1.
Original entry on oeis.org
1, 4, 8, 1, 15, 4, 1, 21, 8, 4, 1, 1, 33, 15, 8, 4, 4, 1, 1, 41, 21, 15, 8, 8, 4, 4, 1, 1, 1, 1, 56, 33, 21, 15, 15, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 87, 56, 41, 33, 33, 21, 21, 15, 15, 15, 15, 8, 8, 8, 8
Offset: 1
Triangle begins:
1;
4;
8, 1;
15, 4, 1;
21, 8, 4, 1, 1;
33, 15, 8, 4, 4, 1, 1;
41, 21, 15, 8, 8, 4, 4, 1, 1, 1, 1;
56, 33, 21, 15, 15, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1;
69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1;
...
For n = 9 the length of row 9 is A000041(9-1) = 22.
From _Omar E. Pol_, Jan 08 2022: (Start)
For n = 9 the lateral view and top view of the tower described in A221529 look like as shown below:
_
22 1 | |
21 1 | |
20 1 | |
19 1 | |
18 1 | |
17 1 | |
16 1 |_|_
15 4 | |
14 4 | |
13 4 | |
12 4 |_ _|_
11 8 | | |
10 8 | | |
9 8 | | |
8 8 |_ _|_|_
7 15 | | |
6 15 |_ _ _| |_
5 21 | | |
4 21 |_ _ _|_ _|_
3 33 |_ _ _ _| | |_
2 41 |_ _ _ _|_|_ _|_ _
1 69 |_ _ _ _ _|_ _|_ _|
.
Level Row 9 Lateral view
k T(9,k) of the tower
.
_ _ _ _ _ _ _ _ _
|_| | | | | | | |
|_ _|_| | | | | |
|_ _| _|_| | | |
|_ _ _| _|_| |
|_ _ _| _| _ _|
|_ _ _ _| |
|_ _ _ _| _ _|
| |
|_ _ _ _ _|
.
Top view
of the tower
.
For n = 9 and k = 1 there are 69 cubic cells in the level 1 starting from the base of the tower, so T(9,1) = 69.
For n = 9 and k = 22 there is only one cubic cell in the level 22 (the top) of the tower, so T(9,22) = 1.
The volume of the tower (also the total number of cubic cells) represents the 9th term of the convolution of A000203 and A000041 hence it's equal to A066186(9) = 270, equaling the sum of the 9th row of triangle. (End)
The length of the m-th block in row n is
A187219(m), m >= 1.
Cf.
A000203,
A024916,
A196020,
A221529,
A236104,
A235791,
A237270,
A237271,
A237593,
A339278,
A262626,
A336811,
A338156,
A340035,
A341149,
A346533,
A350333.
-
f(n) = numbpart(n-1);
T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--; ); 1+s; } \\ A336811
g(n) = sum(k=1, n, n\k*k); \\ A024916
row(n) = vector(f(n), k, g(T(n,k))); \\ Michel Marcus, Jan 22 2022
A340584
Irregular triangle read by rows T(n,k) in which row n lists sigma(n) + sigma(n-1) together with the first n - 2 terms of A000203 in reverse order, with T(1,1) = 1, n >= 1.
Original entry on oeis.org
1, 4, 7, 1, 11, 3, 1, 13, 4, 3, 1, 18, 7, 4, 3, 1, 20, 6, 7, 4, 3, 1, 23, 12, 6, 7, 4, 3, 1, 28, 8, 12, 6, 7, 4, 3, 1, 31, 15, 8, 12, 6, 7, 4, 3, 1, 30, 13, 15, 8, 12, 6, 7, 4, 3, 1, 40, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 42, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 38, 28, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1
Offset: 1
Triangle begins:
1;
4;
7, 1;
11, 3, 1;
13, 4, 3, 1;
18, 7, 4, 3, 1;
20, 6, 7, 4, 3, 1;
23, 12, 6, 7, 4, 3, 1;
28, 8, 12, 6, 7, 4, 3, 1;
31, 15, 8, 12, 6, 7, 4, 3, 1;
30, 13, 15, 8, 12, 6, 7, 4, 3, 1;
40, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1;
42, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1;
38, 28, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1;
...
For n = 7, sigma(7) = 1 + 7 = 8 and sigma(6) = 1 + 2 + 3 + 6 = 12, and 8 + 12 = 20, so the first term of row 7 is T(7,1) = 20. The other terms in row 7 are the first five terms of A000203 in reverse order, that is [6, 7, 4, 3, 1] so the 7th row of the triangle is [20, 6, 7, 4, 3, 1].
From _Omar E. Pol_, Jul 11 2021: (Start)
For n = 7 we can see below the top view and the lateral view of the pyramid described in A245092 (with seven levels) and the top view and the lateral view of the tower described in A221529 (with 11 levels).
_
| |
| |
| |
_ |_|_
|_|_ | |
|_ _|_ |_ _|_
|_ _|_|_ | | |
|_ _ _| |_ |_ _|_|_
|_ _ _|_ _|_ |_ _ _| |_
|_ _ _ _| | |_ |_ _ _|_ _|_ _
|_ _ _ _|_|_ _| |_ _ _ _|_|_ _|
.
Figure 1. Figure 2.
Lateral view Lateral view
of the pyramid. of the tower.
.
. _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_| | | | | | | |_| | | | | |
|_ _|_| | | | | |_ _|_| | | |
|_ _| _|_| | | |_ _| _|_| |
|_ _ _| _|_| |_ _ _| _ _|
|_ _ _| _| |_ _ _| _|
|_ _ _ _| | |
|_ _ _ _| |_ _ _ _|
.
Figure 3. Figure 4.
Top view Top view
of the pyramid. of the tower.
.
Both polycubes have the same base which has an area equal to A024916(7) = 41 equaling the sum of the 7th row of triangle.
Note that in the top view of the tower the symmetric representation of sigma(6) and the symmetric representation of sigma(7) appear unified in the level 1 of the structure as shown above in the figure 4 (that is due to the first two partition numbers A000041 are [1, 1]), so T(7,1) = sigma(7) + sigma(6) = 8 + 12 = 20. (End)
The length of row n is
A028310(n-1).
Column 1 gives 1 together with
A092403.
Cf.
A175254 (volume of the pyramid).
-
Table[If[n <= 2, {Total@ #}, Prepend[#2, Total@ #1] & @@ TakeDrop[#, 2]] &@ DivisorSigma[1, Range[n, 1, -1]], {n, 14}] // Flatten (* Michael De Vlieger, Jan 13 2021 *)
A346562
Irregular triangle read by rows in which row n lists the first n - 2 terms of A000005 together with the sum of A000005(n-1) and A000005(n), with a(1) = 1.
Original entry on oeis.org
1, 3, 1, 4, 1, 2, 5, 1, 2, 2, 5, 1, 2, 2, 3, 6, 1, 2, 2, 3, 2, 6, 1, 2, 2, 3, 2, 4, 6, 1, 2, 2, 3, 2, 4, 2, 7, 1, 2, 2, 3, 2, 4, 2, 4, 7, 1, 2, 2, 3, 2, 4, 2, 4, 3, 6, 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 8, 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 8, 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 6
Offset: 1
Triangle begins:
1;
3;
1, 4;
1, 2, 5;
1, 2, 2, 5;
1, 2, 2, 3, 6;
1, 2, 2, 3, 2, 6;
1, 2, 2, 3, 2, 4, 6;
1, 2, 2, 3, 2, 4, 2, 7;
1, 2, 2, 3, 2, 4, 2, 4, 7;
1, 2, 2, 3, 2, 4, 2, 4, 3, 6;
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 8;
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 8;
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 6;
...
The length of row n is
A028310(n-1).
Column 1 gives the absolute values of
A260196.
Showing 1-4 of 4 results.
Comments