A346551
3-Sondow numbers: numbers k such that p^s divides k/p + 3 for every prime power divisor p^s of k.
Original entry on oeis.org
1, 2, 10, 18, 126, 5418, 141174, 6643507266, 157486189806
Offset: 1
- Github, Jonathan Sondow (1943 - 2020)
- J. M. Grau, A. M. Oller-Marcén, and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013-2014.
-
Sondow[mu_][n_]:= Sondow[mu][n]= Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
Select[Range[1000000],Sondow[3][#]&]
A346552
4-Sondow numbers: numbers k such that p^s divides k/p + 4 for every prime power divisor p^s of k.
Original entry on oeis.org
1, 5, 8, 24, 168, 7224, 188232, 8858009688, 209981586408
Offset: 1
- Github, Jonathan Sondow (1943 - 2020)
- J. M. Grau, A. M. Oller-Marcén and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013-2014.
-
Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
Select[Range[10000000],Sondow[4][#]&]
-
isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 4) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022
A346553
5-Sondow numbers: numbers k such that p^s divides k/p + 5 for every prime power divisor p^s of k.
Original entry on oeis.org
1, 2, 3, 14, 66, 1974, 307146, 3270666, 42404405538, 318501038226
Offset: 1
- Github, Jonathan Sondow (1943 - 2020)
- J. M. Grau, A. M. Oller-Marcén and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013-2014.
-
Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]}, IntegerQ[mu/n+Sum[1/fa[[i, 1]], {i, Length[fa]}]]]
Select[Range[10^7], Sondow[5][#]&]
-
isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 5) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022
A346554
6-Sondow numbers: numbers k such that p^s divides k/p + 6 for every prime power divisor p^s of k.
Original entry on oeis.org
1, 4, 7, 9, 20, 36, 252, 10836, 282348, 13287014532, 314972379612
Offset: 1
- Github, Jonathan Sondow (1943 - 2020)
- J. M. Grau, A. M. Oller-Marcén and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013-2014.
-
Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
Select[Range[10000000],Sondow[6][#]&]
-
isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 6) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022
A346555
7-Sondow numbers: numbers k such that p^s divides k/p + 7 for every prime power divisor p^s of k.
Original entry on oeis.org
1, 2, 6, 15, 78, 294, 12642, 539026980558
Offset: 1
- Github, Jonathan Sondow (1943 - 2020)
- J. M. Grau, A. M. Oller-Marcén and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013-2014.
-
Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
Select[Range[10000000],Sondow[7][#]&]
A346556
8-Sondow numbers: numbers k such that p^s divides k/p + 8 for every prime power divisor p^s of k.
Original entry on oeis.org
1, 3, 16, 48, 336, 14448, 376464, 17716019376, 419963172816
Offset: 1
- Github, Jonathan Sondow (1943 - 2020)
- J. M. Grau, A. M. Oller-Marcén and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013-2014.
-
Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
Select[Range[400000],Sondow[8][#]&]
A349193
1-Sondow numbers: numbers j such that p divides j/p + 1 for every prime divisor p of j.
Original entry on oeis.org
1, 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1
- Github, Jonathan Sondow (1943 - 2020)
- J. M. Grau, A. M. Oller-Marcén, and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013.
-
Sondow[mu_][n_]:= Sondow[mu][n]= Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]];
Select[Range[100000],Sondow[1][#]&]
Showing 1-7 of 7 results.
Comments