cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A346551 3-Sondow numbers: numbers k such that p^s divides k/p + 3 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 10, 18, 126, 5418, 141174, 6643507266, 157486189806
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 3 (mod k).
A positive integer k is a 3-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 3 for every prime power divisor p^s of k.
2) 3/k + Sum_{prime p|k} 1/p is an integer.
3) 3 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 3 (mod k).

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:= Sondow[mu][n]= Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[1000000],Sondow[3][#]&]

Extensions

a(8)-a(9) from Martin Ehrenstein, Dec 31 2021

A346552 4-Sondow numbers: numbers k such that p^s divides k/p + 4 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 5, 8, 24, 168, 7224, 188232, 8858009688, 209981586408
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 4 (mod k).
A positive integer k is a 4-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 4 for every prime power divisor p^s of k.
2) 4/k + Sum_{prime p|k} 1/p is an integer.
3) 4 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 4 (mod k).
Other numbers in the sequence: 8858009688, 209981586408, 33961686334238753642827085044344

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[10000000],Sondow[4][#]&]
  • PARI
    isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 4) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022

Extensions

a(8)-a(9) verified by Martin Ehrenstein, Jan 21 2022

A346553 5-Sondow numbers: numbers k such that p^s divides k/p + 5 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 3, 14, 66, 1974, 307146, 3270666, 42404405538, 318501038226
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 5 (mod k).
A positive integer k is a 5-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 5 for every prime power divisor p^s of k.
2) 5/k + Sum_{prime p|k} 1/p is an integer.
3) 5 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 5 (mod k).

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]}, IntegerQ[mu/n+Sum[1/fa[[i, 1]], {i, Length[fa]}]]]
    Select[Range[10^7], Sondow[5][#]&]
  • PARI
    isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 5) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022

Extensions

a(9)-a(10) from Martin Ehrenstein, Jan 19 2022

A346554 6-Sondow numbers: numbers k such that p^s divides k/p + 6 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 4, 7, 9, 20, 36, 252, 10836, 282348, 13287014532, 314972379612
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 6 (mod k).
A positive integer k is a 6-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 6 for every prime power divisor p^s of k.
2) 6/k + Sum_{prime p|k} 1/p is an integer.
3) 6 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 6 (mod k).
Other numbers in the sequence: 13287014532, 314972379612, 50942529501358130464240627566516

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[10000000],Sondow[6][#]&]
  • PARI
    isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 6) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022

Extensions

a(10)-a(11) verified by Martin Ehrenstein, Jan 21 2022

A346555 7-Sondow numbers: numbers k such that p^s divides k/p + 7 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 6, 15, 78, 294, 12642, 539026980558
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 7 (mod k).
A positive integer k is a 7-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 7 for every prime power divisor p^s of k.
2) 7/k + Sum_{prime p|k} 1/p is an integer.
3) 7 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 7 (mod k).

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, this sequence, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[10000000],Sondow[7][#]&]

Extensions

a(8) from Martin Ehrenstein, Feb 04 2022

A346556 8-Sondow numbers: numbers k such that p^s divides k/p + 8 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 3, 16, 48, 336, 14448, 376464, 17716019376, 419963172816
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 8 (mod k).
A positive integer k is a 8-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 8 for every prime power divisor p^s of k.
2) 8/k + Sum_{prime p|k} 1/p is an integer.
3) 8 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 8 (mod k).
Other numbers in the sequence: 17716019376, 419963172816, 67923372668477507285654170088688

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, this sequence, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]]
    Select[Range[400000],Sondow[8][#]&]

Extensions

a(8)-a(9) verified by Martin Ehrenstein, Feb 04 2022

A349193 1-Sondow numbers: numbers j such that p divides j/p + 1 for every prime divisor p of j.

Original entry on oeis.org

1, 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086
Offset: 1

Views

Author

Keywords

Comments

These are the weak primary pseudoperfect numbers mentioned in Grau-Oller-Sondow (2013).
Includes the primary pseudoperfect numbers (A054377). Any weak primary pseudoperfect number which is not a primary pseudoperfect number must have more than 58 distinct prime factors, and therefore must be greater than 10^110; none are known.
A positive integer j is a k-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides j/p + k for every prime power divisor p^s of j.
2) k/j + Sum_{prime p|j} 1/p is an integer.
3) k + Sum_{prime p|j} j/p == 0 (mod j).
4) Sum_{i=1..j} i^A000010(j) == k (mod j).
Numbers m such that A235137(m) == 1 (mod m).

Crossrefs

(-1) and (-2)-Sondow numbers: A326715, A330069.
2-Sondow to 9-Sondow numbers: A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:= Sondow[mu][n]= Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]];
    Select[Range[100000],Sondow[1][#]&]
Showing 1-7 of 7 results.