cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346563 a(n) = n + A007978(n).

Original entry on oeis.org

3, 5, 5, 7, 7, 10, 9, 11, 11, 13, 13, 17, 15, 17, 17, 19, 19, 22, 21, 23, 23, 25, 25, 29, 27, 29, 29, 31, 31, 34, 33, 35, 35, 37, 37, 41, 39, 41, 41, 43, 43, 46, 45, 47, 47, 49, 49, 53, 51, 53, 53, 55, 55, 58, 57, 59, 59, 61, 61, 67, 63, 65, 65, 67, 67
Offset: 1

Views

Author

Keywords

Comments

Beginning at n=3, a(n) represents the maximum length of consecutive numbers that are divisible by the product of their nonzero digits in base n. In particular, if n=10, the sequence of numbers that are divisible by the product of their nonzero digits is given by A055471.

Examples

			For n=6, the least non-divisor of 6 is 4, so a(6) = 6+4 = 10. As seen in the Comments section, 55980, 55981, ..., 55989 form a sequence of length 10, where every number is divisible by the product of its nonzero digits in base n=6. Work has been done to show that 10 is the maximum length for such sequences.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 1}, While[Divisible[n, k], k++]; n + k]; Array[a, 100] (* Amiram Eldar, Jul 23 2021 *)
  • PARI
    a(n) = my(k=2); while(!(n % k), k++); n+k; \\ Michel Marcus, Jul 23 2021
  • Python
    goal = 100
    these = []
    n = 1
    while n <= goal:
        k = 1
        while n % k == 0:
            k = k + 1
        these.append(n + k)
        n += 1
    print(these)
    

Formula

a(2k+1) = 2k+3.
a(2k) >= 2k+3.