cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sophia Lebiere

Sophia Lebiere's wiki page.

Sophia Lebiere has authored 8 sequences.

A346199 a(n) is the number of permutations on [n] with at least one strong fixed point and no small descents.

Original entry on oeis.org

1, 1, 1, 5, 19, 95, 569, 3957, 31455, 281435, 2799981, 30666153, 366646995, 4751669391, 66348304849, 992975080813, 15856445382119, 269096399032035, 4836375742967861, 91766664243841393, 1833100630242606203, 38452789552631651191, 845116020421125048153
Offset: 1

Keywords

Comments

A small descent in a permutation p is a position i such that p(i)-p(i+1)=1.
A strong fixed point is a fixed point (or splitter) p(k)=k such that p(i) < k for i < k and p(j) > k for j > k.

Examples

			For n = 4, the a(4) = 5 permutations on [4] with strong fixed points but no small descents: {(1*, 2*, 3*, 4*), (1*, 3, 4, 2), (1*, 4, 2, 3), (2, 3, 1, 4*), (3, 1, 2, 4*)} where * marks strong fixed points.
		

References

  • E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways For Your Mathematical Plays, Vol. 1, CRC Press, 2001.

Programs

Formula

a(n) = b(n-1) + Sum_{i=4..n} A346189(i-1)*b(n-i) where b(n) = A000255(n).

A346563 a(n) = n + A007978(n).

Original entry on oeis.org

3, 5, 5, 7, 7, 10, 9, 11, 11, 13, 13, 17, 15, 17, 17, 19, 19, 22, 21, 23, 23, 25, 25, 29, 27, 29, 29, 31, 31, 34, 33, 35, 35, 37, 37, 41, 39, 41, 41, 43, 43, 46, 45, 47, 47, 49, 49, 53, 51, 53, 53, 55, 55, 58, 57, 59, 59, 61, 61, 67, 63, 65, 65, 67, 67
Offset: 1

Keywords

Comments

Beginning at n=3, a(n) represents the maximum length of consecutive numbers that are divisible by the product of their nonzero digits in base n. In particular, if n=10, the sequence of numbers that are divisible by the product of their nonzero digits is given by A055471.

Examples

			For n=6, the least non-divisor of 6 is 4, so a(6) = 6+4 = 10. As seen in the Comments section, 55980, 55981, ..., 55989 form a sequence of length 10, where every number is divisible by the product of its nonzero digits in base n=6. Work has been done to show that 10 is the maximum length for such sequences.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 1}, While[Divisible[n, k], k++]; n + k]; Array[a, 100] (* Amiram Eldar, Jul 23 2021 *)
  • PARI
    a(n) = my(k=2); while(!(n % k), k++); n+k; \\ Michel Marcus, Jul 23 2021
  • Python
    goal = 100
    these = []
    n = 1
    while n <= goal:
        k = 1
        while n % k == 0:
            k = k + 1
        these.append(n + k)
        n += 1
    print(these)
    

Formula

a(2k+1) = 2k+3.
a(2k) >= 2k+3.

A346537 Squares that are divisible by the product of their nonzero digits.

Original entry on oeis.org

1, 4, 9, 36, 100, 144, 400, 900, 1024, 1296, 2304, 2500, 2916, 3600, 10000, 11664, 12100, 14400, 22500, 32400, 40000, 41616, 78400, 82944, 90000, 102400, 110224, 121104, 122500, 129600, 152100, 176400, 186624, 200704, 202500, 219024, 230400, 250000, 260100, 291600
Offset: 1

Keywords

Examples

			For the perfect square 1024 = 32^2 the product of its nonzero digits is 8 which divides 1024.
		

Crossrefs

Intersection of A000290 and A055471.

Programs

  • Mathematica
    Select[Range[500]^2, Divisible[#, Times @@ Select[IntegerDigits[#], #1 > 0 &]] &] (* Amiram Eldar, Jul 23 2021 *)
  • PARI
    isok(m) = issquare(m) && !(m % vecprod(select(x->(x>0), digits(m))));
    lista(nn) = for (m=1, nn, if (isok(m^2), print1(m^2, ", "))); \\ Michel Marcus, Jul 23 2021
  • Python
    from math import prod
    def nzpd(n): return prod([int(d) for d in str(n) if d != '0'])
    def ok(sqr): return sqr > 0 and sqr%nzpd(sqr) == 0
    print(list(filter(ok, (i*i for i in range(541))))) # Michael S. Branicky, Jul 23 2021
    

A339999 Squares that are divisible by both the sum of their digits and the product of their nonzero digits.

Original entry on oeis.org

1, 4, 9, 36, 100, 144, 400, 900, 1296, 2304, 2916, 3600, 10000, 11664, 12100, 14400, 22500, 32400, 40000, 41616, 82944, 90000, 121104, 122500, 129600, 152100, 176400, 186624, 202500, 219024, 230400, 260100, 291600, 360000, 419904, 435600, 504100
Offset: 1

Keywords

Examples

			For the perfect square 144 = 12^2, the sum of its digits is 9, which divides 144, and the product of its nonzero digits is 16, which also divides 144 so 144 is a term of the sequence.
		

Crossrefs

Intersection of A000290, A005349 and A055471.

Programs

  • Mathematica
    Select[Range[720]^2, And @@ Divisible[#, {Plus @@ (d = IntegerDigits[#]), Times @@ Select[d, #1 > 0 &]}] &] (* Amiram Eldar, Jul 23 2021 *)
  • Python
    from math import prod
    def sumd(n): return sum(map(int, str(n)))
    def nzpd(n): return prod([int(d) for d in str(n) if d != '0'])
    def ok(sqr): return sqr > 0 and sqr%sumd(sqr) == 0 and sqr%nzpd(sqr) == 0
    print(list(filter(ok, (i*i for i in range(1001)))))
    # Michael S. Branicky, Jul 23 2021

A346198 a(n) is the number of permutations on [n] with no strong fixed points but contains at least one small descent.

Original entry on oeis.org

0, 1, 1, 8, 43, 283, 2126, 17947, 168461, 1741824, 19684171, 241506539, 3198239994, 45482655683, 691471698917, 11193266251700, 192238116358427, 3491633681792507, 66875708261486766, 1347168876070616179, 28474546456352896021, 630130731702950549248, 14570725407559756078387, 351411668456841530417027
Offset: 1

Keywords

Comments

A small descent in a permutation p is a position i such that p(i)-p(i+1)=1.
A strong fixed point is a fixed point (or splitter) p(k)=k such that p(i) < k for i < k and p(j) > k for j > k.

Examples

			For n = 4, the a(4) = 8 permutations on [4] with no strong fixed points but has small descents: {([2, 1], [4, 3]), (2, [4, 3], 1), ([3, 2], 4, 1), (3, 4, [2, 1]), (4, 1, [3, 2]), (4, [2, 1], 3), ([4, 3], 1, 2), (<4, 3, 2, 1>)} []small descent, <>consecutive small descents.
		

References

  • E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways For Your Mathematical Plays, Vol. 1, CRC Press, 2001.

Programs

Formula

For n > 2, a(n) = b(n)-c(n) where b(n) = A052186(n-1), c(n) = A346189(n).

A346657 Numbers that are not divisible by the product of their nonzero digits.

Original entry on oeis.org

13, 14, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87
Offset: 1

Keywords

Examples

			The product of the nonzero digits of 42 is 4*2 = 8, which does not divide 42.
		

Crossrefs

Complement of A055471.

Programs

  • Mathematica
    Select[Range[100], !Divisible[#, Times @@ Select[IntegerDigits[#], #1 > 0 &]] &] (* Amiram Eldar, Jul 27 2021 *)
  • PARI
    isok(k) = k % vecprod(select(x->(x>0), digits(k))); \\ Michel Marcus, Jul 28 2021
  • Python
    from math import prod
    def ok(n): return n > 0 and n%prod([int(d) for d in str(n) if d != '0'])
    print(list(filter(ok, range(88)))) # Michael S. Branicky, Jul 27 2021
    

A346189 a(n) is the number of permutations on [n] with no strong fixed points or small descents.

Original entry on oeis.org

0, 0, 2, 6, 34, 214, 1550, 12730, 116874, 1187022, 13219550, 160233258, 2100360778, 29610224590, 446789311934, 7185155686666, 122690711149290, 2217055354281582, 42269657477711198, 847998698508705834, 17857221256001240458, 393839277313540073230, 9078806210245773668990, 218340709713567352161226
Offset: 1

Keywords

Comments

A small descent in a permutation p is a position i such that p(i)-p(i+1)=1.
A strong fixed point is a fixed point (or splitter) p(k)=k such that p(i) < k for i < k and p(j) > k for j > k.

Examples

			For n = 4, the a(4) = 6 permutations on [4] with no strong fixed points or small descents: {(2,3,4,1),(3,4,1,2),(4,1,2,3),(3,1,4,2),(2,4,1,3),(4,2,3,1)}.
		

References

  • E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways For Your Mathematical Plays, Vol. 1, CRC Press, 2001.

Programs

Formula

For n > 3, a(n) = b(n) - b(n-1) - Sum{i=4..n}(a(i-1)*b(n-i)) where b(n) = A000255(n-1) and b(0) = 1.

A346204 a(n) is the number of permutations on [n] with at least one strong fixed point and at least one small descent.

Original entry on oeis.org

0, 0, 2, 5, 24, 128, 795, 5686, 46090, 418519, 4213098, 46595650, 561773033, 7333741536, 103065052300, 1551392868821, 24902155206164, 424588270621876, 7663358926666175, 145967769353476594, 2926073829112697318, 61577929208485406331, 1357369100658321844470, 31276096500003460511422
Offset: 1

Keywords

Comments

A small descent in a permutation p is a position i such that p(i)-p(i+1)=1.
A strong fixed point is a fixed point (or splitter) p(k)=k such that p(i) < k for i < k and p(j) > k for j > k.

Examples

			For n=4, the a(4)=5 permutations on [4] with strong fixed points and small descents: {(1*, 2*, [4, 3]), (1*, [3, 2], 4*), (1*, <4, 3, 2>), ([2, 1], 3*, 4*), (<3, 2, 1>, 4*)}. *strong fixed point, []small descent, <>consecutive small descents.
		

References

  • E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways For Your Mathematical Plays, Vol. 1, CRC Press, 2001.

Programs

  • Python
    import math
    bn = [1,1,1]
    wn = [0,0,0]
    kn = [1,1,1]
    def summation(n):
        final = bn[n] - bn[n-1]
        for k in range(4,n+1):
            final -= wn[k-1]*bn[n-k]
        return final
    def smallsum(n):
        final = bn[n-1]
        for k in range(4,n+1):
            final += wn[k-1]*bn[n-k]
        return final
    def derrangement(n):
        finalsum = 0
        for i in range(n+1):
            if i%2 == 0:
                finalsum += math.factorial(n)*1//math.factorial(i)
            else:
                finalsum -= math.factorial(n)*1//math.factorial(i)
        if finalsum != 0:
            return finalsum
        else:
            return 1
    def fixedpoint(n):
        finalsum = math.factorial(n-1)
        for i in range(2,n):
            finalsum += math.factorial(i-i)*math.factorial(n-i-1)
            print(math.factorial(i-i)*math.factorial(n-i-1))
        return finalsum
    def no_cycles(n):
        goal = n
        cycles = [0, 1]
        current = 2
        while current<= goal:
            new = 0
            k = 1
            while k<=current:
                new += (math.factorial(k-1)-cycles[k-1])*(math.factorial(current-k))
                k+=1
            cycles.append(new)
            current+=1
        return cycles
    def total_func(n):
        for i in range(3,n+1):
            bn.append(derrangement(i+1)//(i))
            kn.append(smallsum(i))
            wn.append(summation(i))
        an = no_cycles(n)
        tl = [int(an[i]-kn[i]) for i in range(n+1)]
        factorial = [math.factorial(x) for x in range(0,n+1)]
        print("A346189 :" + str(wn[1:]))
        print("A346198 :" + str([factorial[i]-wn[i]-tl[i]-kn[i] for i in range(n+1)][1:]))
        print("A346199 :" + str(kn[1:]))
        print("A346204 :" + str(tl[1:]))
    total_func(20)

Formula

a(n) = A006932(n) - A346199(n).