A344651 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with alternating sum k, with k ranging from n mod 2 to n in steps of 2.
1, 1, 1, 1, 2, 1, 2, 2, 1, 4, 2, 1, 3, 5, 2, 1, 7, 5, 2, 1, 5, 9, 5, 2, 1, 12, 10, 5, 2, 1, 7, 17, 10, 5, 2, 1, 19, 19, 10, 5, 2, 1, 11, 28, 20, 10, 5, 2, 1, 30, 33, 20, 10, 5, 2, 1, 15, 47, 35, 20, 10, 5, 2, 1, 45, 57, 36, 20, 10, 5, 2, 1, 22, 73, 62, 36, 20, 10, 5, 2, 1
Offset: 0
Examples
Triangle begins: 1 1 1 1 2 1 2 2 1 4 2 1 3 5 2 1 7 5 2 1 5 9 5 2 1 12 10 5 2 1 7 17 10 5 2 1 19 19 10 5 2 1 11 28 20 10 5 2 1 30 33 20 10 5 2 1 15 47 35 20 10 5 2 1 45 57 36 20 10 5 2 1 22 73 62 36 20 10 5 2 1 67 92 64 36 20 10 5 2 1 30 114 102 65 36 20 10 5 2 1 97 147 107 65 36 20 10 5 2 1 Row n = 10 counts the following partitions (A = 10): (55) (64) (73) (82) (91) (A) (3322) (442) (433) (622) (811) (4411) (541) (532) (721) (222211) (3331) (631) (7111) (331111) (4222) (5221) (61111) (22111111) (4321) (6211) (1111111111) (5311) (42211) (22222) (52111) (32221) (511111) (33211) (4111111) (43111) (322111) (421111) (2221111) (3211111) (31111111) (211111111) The conjugate version is: (A) (55) (3331) (331111) (31111111) (1111111111) (64) (73) (5311) (511111) (211111111) (82) (91) (7111) (3211111) (442) (433) (33211) (4111111) (622) (532) (43111) (22111111) (4222) (541) (52111) (22222) (631) (61111) (721) (322111) (811) (421111) (3322) (2221111) (4321) (4411) (5221) (6211) (32221) (42211) (222211)
Crossrefs
This is A103919 with all zeros removed.
The reverse version is the right half of A344612.
The strict reverse version is the right half of A344739.
A344610 counts partitions of n by positive rev-alternating sum.
A344611 counts partitions of 2n with rev-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Programs
-
Mathematica
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; Table[Length[Select[IntegerPartitions[n],ats[#]==k&]],{n,0,15},{k,Mod[n,2],n,2}]
Comments