A346642 a(n) = Sum_{j=1..n} Sum_{i=1..j} j^3*i^3.
0, 1, 73, 1045, 7445, 35570, 130826, 399738, 1063290, 2539515, 5564515, 11362351, 21875503, 40068860, 70321460, 118921460, 194681076, 309689493, 480223005, 727832905, 1080632905, 1574809126, 2256376958, 3183210350, 4427370350, 6077760975, 8243141751
Offset: 0
Examples
For n=3, a(3) = (1*1)^3+(2*1)^3+(2*2)^3+(3*1)^3+(3*2)^3+(3*3)^3 = 1045, a(3) = 1^3*(1^3)+2^3*(1^3+2^3)+3^3*(1^3+2^3+3^3) = 1045.
Links
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[-(8 x^5 + 179 x^4 + 584 x^3 + 424 x^2 + 64 x + 1) x/(x - 1)^9, {x, 0, 26}], x] (* Michael De Vlieger, Feb 04 2022 *)
-
PARI
{a(n) = n*(n+1)*(n+2)*(21n^5+69n^4+45n^3-21n^2-6n+4)/672};
-
PARI
a(n) = sum(i=1, n, sum(j=1, i, i^3*j^3)); \\ Michel Marcus, Jan 27 2022
-
Python
def A346642(n): return n*(n**2*(n*(n*(n*(n*(21*n + 132) + 294) + 252) + 21) - 56) + 8)//672 # Chai Wah Wu, Feb 17 2022
Formula
a(n) = n*(n+1)*(n+2)*(21*n^5+69*n^4+45*n^3-21*n^2-6*n+4)/672 (from the recurrent form of Faulhaber's formula).
G.f.: -(8*x^5+179*x^4+584*x^3+424*x^2+64*x+1)*x/(x-1)^9. - Alois P. Heinz, Jan 27 2022
Comments