cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346642 a(n) = Sum_{j=1..n} Sum_{i=1..j} j^3*i^3.

Original entry on oeis.org

0, 1, 73, 1045, 7445, 35570, 130826, 399738, 1063290, 2539515, 5564515, 11362351, 21875503, 40068860, 70321460, 118921460, 194681076, 309689493, 480223005, 727832905, 1080632905, 1574809126, 2256376958, 3183210350, 4427370350, 6077760975, 8243141751
Offset: 0

Views

Author

Roudy El Haddad, Jan 24 2022

Keywords

Comments

a(n) is the sum of all products of two cubes of positive integers up to n, i.e., the sum of all products of two elements from the set of cubes {1^3, ..., n^3}.

Examples

			For n=3,
a(3) = (1*1)^3+(2*1)^3+(2*2)^3+(3*1)^3+(3*2)^3+(3*3)^3 = 1045,
a(3) = 1^3*(1^3)+2^3*(1^3+2^3)+3^3*(1^3+2^3+3^3) = 1045.
		

Crossrefs

Cf. A000537 (sum of first n cubes), A347107 (for distinct cubes).
Cf. A001296 (for power 1), A060493 (for squares).

Programs

  • Mathematica
    CoefficientList[Series[-(8 x^5 + 179 x^4 + 584 x^3 + 424 x^2 + 64 x + 1) x/(x - 1)^9, {x, 0, 26}], x] (* Michael De Vlieger, Feb 04 2022 *)
  • PARI
    {a(n) = n*(n+1)*(n+2)*(21n^5+69n^4+45n^3-21n^2-6n+4)/672};
    
  • PARI
    a(n) = sum(i=1, n, sum(j=1, i, i^3*j^3)); \\ Michel Marcus, Jan 27 2022
    
  • Python
    def A346642(n): return n*(n**2*(n*(n*(n*(n*(21*n + 132) + 294) + 252) + 21) - 56) + 8)//672 # Chai Wah Wu, Feb 17 2022

Formula

a(n) = n*(n+1)*(n+2)*(21*n^5+69*n^4+45*n^3-21*n^2-6*n+4)/672 (from the recurrent form of Faulhaber's formula).
G.f.: -(8*x^5+179*x^4+584*x^3+424*x^2+64*x+1)*x/(x-1)^9. - Alois P. Heinz, Jan 27 2022