A347107
a(n) = Sum_{1 <= i < j <= n} j^3*i^3.
Original entry on oeis.org
0, 0, 8, 251, 2555, 15055, 63655, 214918, 616326, 1561110, 3586110, 7612385, 15139553, 28506101, 51229165, 88438540, 147420940, 238291788, 374813076, 575377095, 864177095, 1272587195, 1840775123, 2619572626, 3672629650, 5078879650, 6935344650, 9360309933
Offset: 0
For n=3, a(3) = (2*1)^3+(3*1)^3+(3*2)^3 = 251.
- Roudy El Haddad, Multiple Sums and Partition Identities, arXiv:2102.00821 [math.CO], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 2: Multiple sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Cf.
A346642 (for nondistinct cubes).
-
CoefficientList[Series[-(x^5 + 64 x^4 + 424 x^3 + 584 x^2 + 179 x + 8) x^2/(x - 1)^9, {x, 0, 27}], x] (* Michael De Vlieger, Feb 04 2022 *)
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,8,251,2555,15055,63655,214918,616326},30] (* Harvey P. Dale, Jul 07 2025 *)
-
a(n) = sum(i=2, n, sum(j=1, i-1, i^3*j^3));
-
{a(n) = n*(n+1)*(n-1)*(21*n^5+36*n^4-21*n^3-48*n^2+8)/672};
-
def A347107(n): return n*(n**2*(n*(n*(n*(n*(21*n + 36) - 42) - 84) + 21) + 56) - 8)//672 # Chai Wah Wu, Feb 17 2022
A352979
a(n) = Sum_{k=1..n} Sum_{j=1..k} Sum_{i=1..j} (k*j*i)^3.
Original entry on oeis.org
0, 1, 585, 28800, 505280, 4951530, 33209946, 170320080, 714724560, 2566030995, 8130545995, 23253835176, 61054704360, 149085989780, 342048076020, 743408003520, 1540821690816, 3062326169925, 5862986735085, 10855192630480, 19500255870480
Offset: 0
- El Haddad, R. (2022). A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1). [Typo corrected by _Georg Fischer_, Sep 30 2022]
-
{a(n) = n^2 * (n + 1)^2 * (n + 2) * (n + 3) * (35*n^6 + 205*n^5 + 263*n^4 - 221*n^3 - 214*n^2 + 324*n - 112)/13440};
-
def A352979(n): return n**2*(n*(n*(n*(n*(n*(n*(n*(n*(n*(35*n + 450) + 2293) + 5700) + 6405) + 770) - 3661) - 240) + 2320) + 40) - 672)//13440 # Chai Wah Wu, May 14 2022
A351766
a(n) = Sum_{j=1..n} Sum_{i=1..j} (i*j)^4.
Original entry on oeis.org
0, 1, 273, 8211, 98835, 710710, 3659110, 14886186, 50816298, 151416111, 404746111, 990005445, 2248888005, 4798557036, 9703780828, 18730825828, 34711648356, 62053834605, 107439683325, 180766879111, 296393439111, 474761104818, 744484165986, 1145004918190, 1729932641710, 2571200219835
Offset: 0
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
{a(n) = n*(n+1)*(n+2)*(2*n+1)*(2*n+3)*(9*n^5+25*n^4-5*n^3-25*n^2+21*n-5)/1800};
-
a(n) = sum(j=1, n, sum(i=1, j, i^4*j^4));
A351770
a(n) = Sum_{j=1..n} Sum_{i=1..j} (i*j)^5.
Original entry on oeis.org
0, 1, 1057, 68125, 1399325, 15227450, 110102426, 597639882, 2621915850, 9756511275, 31839011275, 93340522951, 250280856007, 622316813300, 1450471654100, 3196426654100, 6706824221076, 13476181309557, 26055415288725, 48670370285425, 88136930285425, 155187254126926
Offset: 0
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
seq(n*(n+1)*(n+2)*(44*n^9+276*n^8+492*n^7-48*n^6-609*n^5+207*n^4+487*n^3-291*n^2-90*n+60)/3168,
n=0..30);# Robert Israel, Feb 18 2022
-
{a(n) = n*(n+1)*(n+2)*(44*n^9+276*n^8+492*n^7-48*n^6-609*n^5+207*n^4+487*n^3-291*n^2-90*n+60)/3168};
-
a(n) = sum(j=1, n, sum(i=1, j, i^5*j^5));
Showing 1-4 of 4 results.
Comments