cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A346642 a(n) = Sum_{j=1..n} Sum_{i=1..j} j^3*i^3.

Original entry on oeis.org

0, 1, 73, 1045, 7445, 35570, 130826, 399738, 1063290, 2539515, 5564515, 11362351, 21875503, 40068860, 70321460, 118921460, 194681076, 309689493, 480223005, 727832905, 1080632905, 1574809126, 2256376958, 3183210350, 4427370350, 6077760975, 8243141751
Offset: 0

Views

Author

Roudy El Haddad, Jan 24 2022

Keywords

Comments

a(n) is the sum of all products of two cubes of positive integers up to n, i.e., the sum of all products of two elements from the set of cubes {1^3, ..., n^3}.

Examples

			For n=3,
a(3) = (1*1)^3+(2*1)^3+(2*2)^3+(3*1)^3+(3*2)^3+(3*3)^3 = 1045,
a(3) = 1^3*(1^3)+2^3*(1^3+2^3)+3^3*(1^3+2^3+3^3) = 1045.
		

Crossrefs

Cf. A000537 (sum of first n cubes), A347107 (for distinct cubes).
Cf. A001296 (for power 1), A060493 (for squares).

Programs

  • Mathematica
    CoefficientList[Series[-(8 x^5 + 179 x^4 + 584 x^3 + 424 x^2 + 64 x + 1) x/(x - 1)^9, {x, 0, 26}], x] (* Michael De Vlieger, Feb 04 2022 *)
  • PARI
    {a(n) = n*(n+1)*(n+2)*(21n^5+69n^4+45n^3-21n^2-6n+4)/672};
    
  • PARI
    a(n) = sum(i=1, n, sum(j=1, i, i^3*j^3)); \\ Michel Marcus, Jan 27 2022
    
  • Python
    def A346642(n): return n*(n**2*(n*(n*(n*(n*(21*n + 132) + 294) + 252) + 21) - 56) + 8)//672 # Chai Wah Wu, Feb 17 2022

Formula

a(n) = n*(n+1)*(n+2)*(21*n^5+69*n^4+45*n^3-21*n^2-6*n+4)/672 (from the recurrent form of Faulhaber's formula).
G.f.: -(8*x^5+179*x^4+584*x^3+424*x^2+64*x+1)*x/(x-1)^9. - Alois P. Heinz, Jan 27 2022

A352980 a(n) = Sum_{1 <= i < j < k <= n} (k*j*i)^3.

Original entry on oeis.org

0, 0, 0, 216, 16280, 335655, 3587535, 25421200, 135459216, 584760870, 2145870870, 6918983280, 20073184560, 53334782501, 131555523645, 304453955520, 666698215360, 1390977293580, 2780695001196, 5351537889480, 9954554649480, 17957698726275
Offset: 0

Views

Author

Roudy El Haddad, Apr 13 2022

Keywords

Comments

a(n) is the sum of all products of three distinct cubes of positive integers up to n, i.e., the sum of all products of three distinct elements from the set of cubes {1^3, ..., n^3}.

Crossrefs

Cf. A352979 (for nondistinct cubes).
Cf. A001303 (for power 1), A000597 (for squares).
Cf. A000578 (cubes), A000537 (sum of first n cubes), A347107 (order 2).

Programs

  • PARI
    {a(n) = n^2 * (n + 1)^2 * (n - 1) * (n - 2) * (35*n^6 + 5*n^5 - 237*n^4 - 77*n^3 + 502*n^2 + 148*n -336)/13440};
    
  • Python
    def A352980(n): return n**2*(n*(n*(n*(n*(n*(n*(n*(n*(n*(35*n - 30) - 347) + 180) + 1365) - 350) - 2541) + 240) + 2160) - 40) - 672)//13440 # Chai Wah Wu, May 15 2022

Formula

a(n) = Sum_{k=3..n} Sum_{j=2..k-1} Sum_{i=1..j-1} k^3*j^3*i^3.
a(n) = n^2 * (n + 1)^2 * (n - 1) * (n - 2) * (35*n^6 + 5*n^5 - 237*n^4 - 77*n^3 + 502*n^2 + 148*n -336)/13440.
a(n) = binomial(n+1,4)*binomial(n+1,2)*(35*n^6 + 5*n^5 - 237*n^4 - 77*n^3 + 502*n^2 + 148*n -336)/280.

A351760 a(n) = Sum_{1 <= i < j <= n} (i*j)^4.

Original entry on oeis.org

0, 0, 16, 1393, 26481, 247731, 1516515, 6978790, 26131686, 83684778, 237014778, 607915231, 1436816095, 3170754405, 6600189141, 13064343516, 24750198748, 45116627556, 79482515700, 135826148445, 225852708445, 366397514791, 581244702423, 903454469346, 1378306878690, 2066986566190
Offset: 0

Views

Author

Roudy El Haddad, Feb 18 2022

Keywords

Comments

a(n) is the sum of all products of two distinct elements from the set {1^4, ..., n^4}.

Crossrefs

Cf. A000217 (for power 0), A000914 (for power 1), A000596 (for squares), A347107 (for cubes).
Cf. A000583 (fourth powers), A000538 (sum of fourth powers).

Programs

  • PARI
    {a(n) = n*(n-1)*(n+1)*(2*n-1)*(2*n+1)*(9*n^5+20*n^4-15*n^3-50*n^2+n+30)/1800};
    
  • PARI
    a(n) = sum(j=2, n, sum(i=1, j-1, i^4*j^4));
    
  • Python
    def A351760(n): return n*(n*(n*(n*(n*(n*(n*(n*(n*(9*n+20<<2)-105)-300)+88)+390)-20)-200)+1)+30)//1800 # Chai Wah Wu, Oct 03 2024

Formula

a(n) = Sum_{j=2..n} Sum_{i=1..j-1} j^4*i^4.
a(n) = n*(n - 1)*(n + 1)*(2*n - 1)*(2*n + 1)*(9*n^5 + 20*n^4 - 15*n^3 - 50*n^2 + n + 30)/1800.
a(n) = binomial(2*n+2, 5)*(9*n^5 + 20*n^4 - 15*n^3 - 50*n^2 + n + 30)/5!.
G.f.: x^2*(16 + 1217*x + 12038*x^2 + 30415*x^3 + 23364*x^4 + 5263*x^5 + 262*x^6 + x^7)/(1 - x)^11. - Stefano Spezia, Feb 18 2022

A351805 a(n) = Sum_{1 <= i < j <= n} j^5*i^5.

Original entry on oeis.org

0, 0, 32, 8051, 290675, 4353175, 38761975, 243824182, 1194358326, 4842169350, 16924669350, 52488756425, 147511725257, 381689190701, 920589376525, 2089893985900, 4500779925100, 9254143113132, 18262909865676, 34746798604575, 63973358604575, 114343801467875
Offset: 0

Views

Author

Roudy El Haddad, Feb 19 2022

Keywords

Comments

a(n) is the sum of all products of two distinct elements from the set {1^5, ..., n^5}.

Crossrefs

Cf. A000217 (for power 0), A000914 (for power 1), A000596 (for squares), A347107 (for cubes), (for fourth powers).
Cf. A000584 (fifth powers), A000539 (sum of fifth powers).

Programs

  • PARI
    {a(n) = n*(n-1)*(n+1)*(44*n^9+120*n^8-132*n^7-540*n^6+99*n^5+912*n^4-11*n^3-672*n^2+120)/3168};

Formula

a(n) = Sum_{j=2..n} Sum_{i=1..j-1} j^5*i^5.
a(n) = n*(n - 1)*(n + 1)*(44*n^9 + 120*n^8 - 132*n^7 - 540*n^6 + 99*n^5 + 912*n^4 - 11*n^3 - 672*n^2 + 120)/3168.
G.f.: -x^2*(x^9 +1044*x^8 +54462*x^7 +595860*x^6 +2048388*x^5 +2563644*x^4 +1193226*x^3 +188508*x^2 +7635*x +32)/(x-1)^13. - Alois P. Heinz, Feb 19 2022
Showing 1-4 of 4 results.