cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A346759 a(n) = Sum_{d|n} floor(d^2/4).

Original entry on oeis.org

0, 1, 2, 5, 6, 12, 12, 21, 22, 32, 30, 52, 42, 62, 64, 85, 72, 113, 90, 136, 124, 152, 132, 212, 162, 212, 204, 262, 210, 324, 240, 341, 304, 362, 324, 477, 342, 452, 424, 552, 420, 624, 462, 640, 590, 662, 552, 852, 612, 813, 724, 892, 702, 1024, 792, 1062, 904, 1052, 870, 1364
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 02 2021

Keywords

Comments

Inverse Moebius transform of quarter-squares (A002620).

Crossrefs

Programs

  • Maple
    f:= proc(n) local d;
        add(floor(d^2/4),d=numtheory:-divisors(n))
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 28 2023
  • Mathematica
    Table[Sum[Floor[d^2/4], {d, Divisors[n]}], {n, 1, 60}]
    nmax = 60; CoefficientList[Series[Sum[x^(2 k)/((1 + x^k) (1 - x^k)^3), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, d^2\4); \\ Michel Marcus, Aug 03 2021

Formula

G.f.: Sum_{k>=1} x^(2*k) / ((1 + x^k) * (1 - x^k)^3).
a(n) = (A001157(n) - A001227(n)) / 4.
Showing 1-1 of 1 results.