A346877 Sum of the divisors, except for the largest, of the n-th odd number.
0, 1, 1, 1, 4, 1, 1, 9, 1, 1, 11, 1, 6, 13, 1, 1, 15, 13, 1, 17, 1, 1, 33, 1, 8, 21, 1, 17, 23, 1, 1, 41, 19, 1, 27, 1, 1, 49, 19, 1, 40, 1, 23, 33, 1, 21, 35, 25, 1, 57, 1, 1, 87, 1, 1, 41, 1, 29, 65, 25, 12, 45, 31, 1, 47, 1, 27, 105, 1, 1, 51, 25, 35, 81, 1, 1, 81, 37
Offset: 1
Examples
For n = 5 the 5th odd number is 9 and the divisors of 9 are [1, 3, 9] and the sum of the divisors of 9 except for the largest is 1 + 3 = 4, so a(5) = 4.
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSigma[1, 2*n - 1] - 2*n + 1; Array[a, 100] (* Amiram Eldar, Aug 20 2021 *) Total[Most[Divisors[#]]]&/@Range[1,161,2] (* Harvey P. Dale, Sep 29 2024 *)
-
PARI
a(n) = sigma(2*n-1) - (2*n-1); \\ Michel Marcus, Aug 20 2021
-
Python
from sympy import divisors def a(n): return sum(divisors(2*n-1)[:-1]) print([a(n) for n in range(1, 79)]) # Michael S. Branicky, Aug 20 2021
Formula
a(n) = A001065(2*n-1).
G.f.: Sum_{k>=0} (2*k + 1) * x^(3*k + 2) / (1 - x^(2*k + 1)). - Ilya Gutkovskiy, Aug 20 2021
Sum_{k=1..n} a(k) = (Pi^2/8 - 1)*n^2 + O(n*log(n)). - Amiram Eldar, Mar 17 2024
Comments