cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346893 Expansion of e.g.f. 1 / (1 - x^5 * exp(x) / 5!).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 6, 21, 56, 126, 504, 6006, 67320, 577863, 4038034, 24975951, 165481680, 1553590220, 19495772856, 249507077436, 2910465717648, 31103684847837, 326286335505438, 3766644374319673, 51399738264984648, 785038533451101930
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Column k=5 of A351703.

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[1/(1 - x^5 Exp[x]/5!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 5] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^5*exp(x)/5!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\5, k^(n-5*k)/(120^k*(n-5*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,5) * a(n-k).
a(n) ~ n! / ((1 + LambertW(2^(3/5)*3^(1/5)/5^(4/5))) * 5^(n+1) * LambertW(2^(3/5)*3^(1/5)/5^(4/5))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/5)} k^(n-5*k)/(120^k * (n-5*k)!). - Seiichi Manyama, May 13 2022