A346927 Decimal expansion of the Dirichlet eta function at 10.
9, 9, 9, 0, 3, 9, 5, 0, 7, 5, 9, 8, 2, 7, 1, 5, 6, 5, 6, 3, 9, 2, 2, 1, 8, 4, 5, 6, 9, 9, 3, 4, 1, 8, 3, 1, 4, 2, 5, 9, 2, 9, 6, 4, 9, 6, 6, 6, 8, 9, 0, 6, 4, 7, 1, 0, 6, 8, 9, 4, 8, 7, 5, 5, 0, 6, 1, 4, 2, 4, 5, 8, 3, 8, 4, 0, 3, 8, 1, 2, 4, 4, 0, 7, 9, 8, 5
Offset: 0
Examples
0.999039507598271565639221845699341831425929649666890...
References
- L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).
Links
- Michael I. Shamos, Shamos's catalog of the real numbers (2011).
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[DirichletEta[10], 10, 100][[1]] (* Amiram Eldar, Aug 08 2021 *)
-
PARI
-polylog(10, -1) \\ Michel Marcus, Aug 08 2021
Formula
Equals 73 * Pi^10 / (2^9 * 3^5 * 5 * 11).
Equals (511/512) * zeta(10).
Equals Sum_{k>=1} (-1)^(k+1) / k^10.
Equals eta(10).