A347012 E.g.f.: exp(x) / (1 - 4 * x)^(1/4).
1, 2, 8, 64, 800, 13376, 278272, 6914048, 199629824, 6566164480, 242327576576, 9915111636992, 445432721932288, 21795710738038784, 1153805878313615360, 65700181140859518976, 4004182878034473254912, 260071258357260225609728, 17932703649301871611346944
Offset: 0
Keywords
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end: a:= n-> add(binomial(n, k)*g(k), k=0..n): seq(a(n), n=0..18); # Alois P. Heinz, Aug 10 2021
-
Mathematica
nmax = 18; CoefficientList[Series[Exp[x]/(1 - 4 x)^(1/4), {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[Binomial[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}] Table[HypergeometricU[1/4, n + 5/4, 1/4]/Sqrt[2], {n, 0, 18}]
Formula
a(n) = Sum_{k=0..n} binomial(n,k) * A007696(k).
a(n) ~ n! * exp(1/4) * 4^n / (Gamma(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 14 2021
Comments