A347025 Maximum size of a family of nonempty sets on n elements such that no set is a union of some others.
0, 1, 2, 4, 7, 13, 24
Offset: 0
Examples
a(4) = 7: an example of such a family is {{1},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}.
Links
- Michael S. Branicky, Python program
- Andy Loo, Union-Free Families of Subsets, arXiv:1511.00170 [math.CO], 2015.
- Augusto Perez, Maximum size of antichain-like collection, Math.SE question (2021).
Programs
-
Python
from itertools import combinations def anysetunion(family): for s in family: allrest = 0 for r in family: if r != s and r&s == r: allrest |= r if allrest == s: return True return False def a(n): if n < 2: return n m = 2 while True: allfailed = True for family in combinations(range(1, 2**n), m): unionfound = anysetunion(family) allfailed &= unionfound if not unionfound: break if allfailed: return m - 1 m += 1 print([a(n) for n in range(5)]) # Michael S. Branicky, Nov 09 2021
Formula
From Michael S. Branicky, Mar 16 2022: (Start)
Bounds from Loo (p. 10):
a(n) >= binomial(n, ceiling(n/2)),
a(n) >= max_{h=1..n-1} a(h) + a(n-h) + 1,
a(n) <= min_{h=1..n-1} a(h) + 2^h*a(n-h). (End)
For n > 2, a(n) >= max_{m=3..n} 2*floor(m/3) + binomial(m,3) + [n < 6] + Sum_{j=m..n-1} binomial(j,m-3) where [n < 6] is an Iverson bracket. - Jon E. Schoenfield, Apr 05 2022
Extensions
a(6) from Jinyuan Wang, Apr 19 2022
Comments