A347034 Triangle read by columns: T(n,k) is the number of functions from an n-element set to a k-element set that are not one-to-one, k>=n>=1.
0, 0, 2, 0, 3, 21, 0, 4, 40, 232, 0, 5, 65, 505, 3005, 0, 6, 96, 936, 7056, 45936, 0, 7, 133, 1561, 14287, 112609, 818503, 0, 8, 176, 2416, 26048, 241984, 2056832, 16736896, 0, 9, 225, 3537, 43929, 470961, 4601529, 42683841, 387057609, 0, 10, 280, 4960, 69760, 848800
Offset: 1
Examples
For T(2,3): the number of functions is 3^2 and the number of one-to-one functions is 6, so 3^2 - 6 = 3 and thus T(2,3) = 3. Triangle T(n,k) begins: k=1 k=2 k=3 k=4 k=5 k=6 n=1: 0 0 0 0 0 0 n=2: 2 3 4 5 6 n=3: 21 40 65 96 n=4: 232 505 936 n=5: 3005 7056 n=6: 45936
Links
- Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141.
Crossrefs
Programs
-
Maple
A347034 := proc(n,k) k^n-k!/(k-n)! ; end proc: seq(seq(A347034(n,k),n=1..k),k=1..12) ; # R. J. Mathar, Jan 12 2023
-
Mathematica
Table[k^n - k!/(k - n)!, {k, 12}, {n, k}] // Flatten
-
PARI
T(n,k) = k^n - k!/(k - n)!; row(k) = vector(k, i, T(i, k)); \\ Michel Marcus, Oct 01 2021
Formula
T(n,k) = k^n - k!/(k - n)!, k>=n.
T(n,n) = A036679(n).
Comments