cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347107 a(n) = Sum_{1 <= i < j <= n} j^3*i^3.

Original entry on oeis.org

0, 0, 8, 251, 2555, 15055, 63655, 214918, 616326, 1561110, 3586110, 7612385, 15139553, 28506101, 51229165, 88438540, 147420940, 238291788, 374813076, 575377095, 864177095, 1272587195, 1840775123, 2619572626, 3672629650, 5078879650, 6935344650, 9360309933
Offset: 0

Views

Author

Roudy El Haddad, Jan 27 2022

Keywords

Comments

a(n) is the sum of all products of two distinct cubes of positive integers up to n, i.e., the sum of all products of two distinct elements from the set of cubes {1^3, ..., n^3}.

Examples

			For n=3, a(3) = (2*1)^3+(3*1)^3+(3*2)^3 = 251.
		

Crossrefs

Cf. A346642 (for nondistinct cubes).
Cf. A000217 (for power 0), A000914 (for power 1), A000596 (for squares).

Programs

  • Mathematica
    CoefficientList[Series[-(x^5 + 64 x^4 + 424 x^3 + 584 x^2 + 179 x + 8) x^2/(x - 1)^9, {x, 0, 27}], x] (* Michael De Vlieger, Feb 04 2022 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,8,251,2555,15055,63655,214918,616326},30] (* Harvey P. Dale, Jul 07 2025 *)
  • PARI
    a(n) = sum(i=2, n, sum(j=1, i-1, i^3*j^3));
    
  • PARI
    {a(n) = n*(n+1)*(n-1)*(21*n^5+36*n^4-21*n^3-48*n^2+8)/672};
    
  • Python
    def A347107(n): return n*(n**2*(n*(n*(n*(n*(21*n + 36) - 42) - 84) + 21) + 56) - 8)//672 # Chai Wah Wu, Feb 17 2022

Formula

a(n) = Sum_{j=2..n} Sum_{i=1..j-1} j^3*i^3.
a(n) = n*(n+1)*(n-1)*(21*n^5+36*n^4-21*n^3-48*n^2+8)/672 (from the generalized form of Faulhaber's formula).
From Alois P. Heinz, Jan 27 2022: (Start)
a(n) = Sum_{i=1..n} A000578(i)*A000537(i-1) = Sum_{i=1..n} i^3*(i*(i-1)/2)^2.
G.f.: -(x^5+64*x^4+424*x^3+584*x^2+179*x+8)*x^2/(x-1)^9. (End)