cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A347142 Sum of 4th powers of divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 17, 1, 17, 1, 17, 1, 98, 1, 17, 82, 17, 1, 98, 1, 273, 82, 17, 1, 354, 1, 17, 82, 273, 1, 723, 1, 273, 82, 17, 626, 354, 1, 17, 82, 898, 1, 1394, 1, 273, 707, 17, 1, 1650, 1, 642, 82, 273, 1, 1394, 626, 2674, 82, 17, 1, 2275, 1, 17, 2483, 273, 626
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^4 &, # < Sqrt[n] &], {n, 1, 65}]
    nmax = 65; CoefficientList[Series[Sum[k^4 x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A347142(n) = { my(s=0); fordiv(n,d,if((d^2)>=n,return(s)); s += (d^4)); }; \\ Antti Karttunen, Aug 19 2021

Formula

G.f.: Sum_{k>=1} k^4 * x^(k*(k + 1)) / (1 - x^k).

A347175 Sum of 4th powers of odd divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 82, 1, 1, 82, 1, 1, 82, 1, 1, 82, 1, 1, 82, 1, 1, 82, 626, 1, 82, 1, 1, 707, 1, 1, 82, 1, 626, 82, 1, 1, 82, 626, 1, 82, 1, 1, 707, 1, 1, 82, 2402, 626, 82, 1, 1, 82, 626, 2402, 82, 1, 1, 707, 1, 1, 2483, 1, 626, 82, 1, 1, 82, 3027, 1, 82, 1, 1, 707
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Examples

			a(18) = 82 as the odd divisors of 18 are the divisors of 9 which are 1, 3 and 9. Of those, 1 and 3 are <= sqrt(18) so we find the sum of fourth powers of 1 and 3 then add them i.e., a(18) = 1^4 + 3^4 = 82. - _David A. Corneth_, Feb 24 2024
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^4 &, # <= Sqrt[n] && OddQ[#] &], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[(2 k - 1)^4 x^((2 k - 1)^2)/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = {
    	my(s = sqrtint(n), res);
    	n>>=valuation(n, 2);
    	d = divisors(n);
    	for(i = 1, #d,
    		if(d[i] <= s,
    			res += d[i]^4
    		,
    			return(res)
    		)
    	); res
    } \\ David A. Corneth, Feb 24 2024

Formula

G.f.: Sum_{k>=1} (2*k - 1)^4 * x^((2*k - 1)^2) / (1 - x^(2*k - 1)).

A347160 Sum of 4th powers of distinct prime divisors of n that are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 16, 0, 16, 0, 16, 81, 16, 0, 97, 0, 16, 81, 16, 0, 97, 0, 16, 81, 16, 0, 97, 625, 16, 81, 16, 0, 722, 0, 16, 81, 16, 625, 97, 0, 16, 81, 641, 0, 97, 0, 16, 706, 16, 0, 97, 2401, 641, 81, 16, 0, 97, 625, 2417, 81, 16, 0, 722, 0, 16, 2482, 16, 625, 97, 0, 16, 81, 3042
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^4 &, # <= Sqrt[n] && PrimeQ[#] &], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[Sum[Prime[k]^4 x^(Prime[k]^2)/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)^4 * x^(prime(k)^2) / (1 - x^prime(k)).
Showing 1-3 of 3 results.