A347340 E.g.f.: exp( exp(exp(x) - 1) - exp(x) ).
1, 0, 1, 4, 17, 91, 587, 4327, 35604, 323316, 3210600, 34574453, 400893066, 4975247460, 65755573847, 921535225267, 13643496840808, 212688569520955, 3480978391442106, 59657975022473437, 1068151956803180295, 19937983367649562025, 387243759600707804811, 7812456801157894913964
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..480
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*binomial(n-1, j-1), j=2..n)) end: b:= proc(n, m) option remember; `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..23); # Alois P. Heinz, Aug 27 2021 # second Maple program: b:= proc(n, t) option remember; `if`(n=0, 1, add(b(n-j, t)* `if`(t=0, 1, b(j, 0)-1)*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 1): seq(a(n), n=0..23); # Alois P. Heinz, Sep 02 2021
-
Mathematica
nmax = 23; CoefficientList[Series[Exp[Exp[Exp[x] - 1] - Exp[x]], {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (BellB[k] - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
-
PARI
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(exp(x)-1)-exp(x)))) \\ Michel Marcus, Aug 27 2021
Comments