cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347432 E.g.f.: exp( exp(x) * (exp(x) - 1 - x) ).

Original entry on oeis.org

1, 0, 1, 4, 14, 66, 397, 2626, 18797, 148238, 1281134, 11943790, 118998365, 1262189748, 14203022537, 168835162632, 2111832477426, 27708387132906, 380355066174121, 5449577398256414, 81316095965242989, 1261149374033472626, 20293627142875917978, 338263983223664609198
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 02 2021

Keywords

Comments

Exponential transform of A000295.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*(2^j-j-1), j=1..n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 02 2021
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[Exp[x] (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (2^k - k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A000295(k) * a(n-k).
a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k) * A003725(k) * A143405(n-k).
a(n) ~ n^(n + 1/2) * (exp(exp(r)*(exp(r) - r - 1) - r/2 - n) / (r^(n + 1/2) * sqrt(2*exp(r)*(1 + 2*r) - (2 + r*(4 + r))))), where r = LambertW(n)/2 + (4 + LambertW(n)) * LambertW(n)^(3/2) / (8 * sqrt(n) * (1 + LambertW(n))). - Vaclav Kotesovec, Jul 07 2022