cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347432 E.g.f.: exp( exp(x) * (exp(x) - 1 - x) ).

Original entry on oeis.org

1, 0, 1, 4, 14, 66, 397, 2626, 18797, 148238, 1281134, 11943790, 118998365, 1262189748, 14203022537, 168835162632, 2111832477426, 27708387132906, 380355066174121, 5449577398256414, 81316095965242989, 1261149374033472626, 20293627142875917978, 338263983223664609198
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 02 2021

Keywords

Comments

Exponential transform of A000295.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*(2^j-j-1), j=1..n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 02 2021
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[Exp[x] (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (2^k - k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A000295(k) * a(n-k).
a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k) * A003725(k) * A143405(n-k).
a(n) ~ n^(n + 1/2) * (exp(exp(r)*(exp(r) - r - 1) - r/2 - n) / (r^(n + 1/2) * sqrt(2*exp(r)*(1 + 2*r) - (2 + r*(4 + r))))), where r = LambertW(n)/2 + (4 + LambertW(n)) * LambertW(n)^(3/2) / (8 * sqrt(n) * (1 + LambertW(n))). - Vaclav Kotesovec, Jul 07 2022

A347435 E.g.f.: exp( exp(x) * (exp(x) - 1 - x - x^2 / 2 - x^3 / 6) ).

Original entry on oeis.org

1, 0, 0, 0, 1, 6, 22, 64, 198, 1138, 10004, 83920, 617993, 4226028, 30103686, 251883012, 2490287821, 26456763078, 281404300348, 2966101610920, 31877462564554, 362624252399566, 4437794875670072, 57612897938229380, 773900876490016325, 10599854900351622752
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 02 2021

Keywords

Comments

Exponential transform of A002663.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*(2^j-j^3/6-5*j/6-1), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 02 2021
  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Exp[x] (Exp[x] - 1 - x - x^2/2 - x^3/6)], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (2^k - 1 - k (k^2 + 5)/6) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A002663(k) * a(n-k).
Showing 1-2 of 2 results.