A347466 Number of factorizations of n^2.
1, 2, 2, 5, 2, 9, 2, 11, 5, 9, 2, 29, 2, 9, 9, 22, 2, 29, 2, 29, 9, 9, 2, 77, 5, 9, 11, 29, 2, 66, 2, 42, 9, 9, 9, 109, 2, 9, 9, 77, 2, 66, 2, 29, 29, 9, 2, 181, 5, 29, 9, 29, 2, 77, 9, 77, 9, 9, 2, 269, 2, 9, 29, 77, 9, 66, 2, 29, 9, 66, 2, 323, 2, 9, 29, 29
Offset: 1
Keywords
Examples
The a(1) = 1 through a(8) = 11 factorizations: () (4) (9) (16) (25) (36) (49) (64) (2*2) (3*3) (2*8) (5*5) (4*9) (7*7) (8*8) (4*4) (6*6) (2*32) (2*2*4) (2*18) (4*16) (2*2*2*2) (3*12) (2*4*8) (2*2*9) (4*4*4) (2*3*6) (2*2*16) (3*3*4) (2*2*2*8) (2*2*3*3) (2*2*4*4) (2*2*2*2*4) (2*2*2*2*2*2)
Links
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n>k, 0, 1)+`if`(isprime(n), 0, add(`if`(d>k, 0, b(n/d, d)), d=numtheory[divisors](n) minus {1, n})) end: a:= proc(n) option remember; b((l-> mul(ithprime(i)^l[i], i=1..nops(l)))( sort(map(i-> i[2], ifactors(n^2)[2]), `>`))$2) end: seq(a(n), n=1..76); # Alois P. Heinz, Oct 14 2021
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[facs[n^2]],{n,25}]
-
PARI
A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s)); A347466(n) = A001055(n^2); \\ Antti Karttunen, Oct 13 2021
Comments