A346308 Intersection of Beatty sequences for sqrt(2) and sqrt(3).
1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, 36, 38, 39, 41, 43, 45, 46, 48, 50, 53, 55, 57, 60, 62, 65, 67, 69, 72, 74, 76, 77, 79, 83, 84, 86, 90, 91, 93, 96, 98, 100, 103, 107, 110, 114, 117, 121, 124, 128, 131, 135, 138, 140, 142, 145, 147, 148, 152, 154
Offset: 1
Keywords
Examples
Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...). Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...). a(n) = (1,5,8,12,...). In the notation in Comments: (1) u ^ v = (1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308. (2) u ^ v' = (2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, 35, ...) = A356085. (3) u' ^ v = (3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, ...) = A356086. (4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087.
Crossrefs
Programs
-
Mathematica
z = 200; r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *) u1 = Take[Complement[Range[1000], u], z] (* A001952 *) r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *) v1 = Take[Complement[Range[1000], v], z] (* A054406 *) t1 = Intersection[u, v] (* A346308 *) t2 = Intersection[u, v1] (* A356085 *) t3 = Intersection[u1, v] (* A356086 *) t4 = Intersection[u1, v1] (* A356087 *)
-
Python
from math import isqrt from itertools import count, islice def A346308_gen(): # generator of terms return filter(lambda n:n == isqrt(3*(isqrt(n**2//3)+1)**2),(isqrt(n*n<<1) for n in count(1))) A346308_list = list(islice(A346308_gen(),30)) # Chai Wah Wu, Aug 06 2022
Formula
In general, if r and s are irrational numbers greater than 1, and a(n) is the n-th term of the intersection (assumed nonempty) of the Beatty sequences for r and s, then a(n) = floor(r*ceiling(a(n)/r)) = floor(s*ceiling(a(n)/s)).
Comments