A346308
Intersection of Beatty sequences for sqrt(2) and sqrt(3).
Original entry on oeis.org
1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, 36, 38, 39, 41, 43, 45, 46, 48, 50, 53, 55, 57, 60, 62, 65, 67, 69, 72, 74, 76, 77, 79, 83, 84, 86, 90, 91, 93, 96, 98, 100, 103, 107, 110, 114, 117, 121, 124, 128, 131, 135, 138, 140, 142, 145, 147, 148, 152, 154
Offset: 1
Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...).
Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...).
a(n) = (1,5,8,12,...).
In the notation in Comments:
(1) u ^ v = (1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308.
(2) u ^ v' = (2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, 35, ...) = A356085.
(3) u' ^ v = (3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, ...) = A356086.
(4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087.
-
z = 200;
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *)
v1 = Take[Complement[Range[1000], v], z] (* A054406 *)
t1 = Intersection[u, v] (* A346308 *)
t2 = Intersection[u, v1] (* A356085 *)
t3 = Intersection[u1, v] (* A356086 *)
t4 = Intersection[u1, v1] (* A356087 *)
-
from math import isqrt
from itertools import count, islice
def A346308_gen(): # generator of terms
return filter(lambda n:n == isqrt(3*(isqrt(n**2//3)+1)**2),(isqrt(n*n<<1) for n in count(1)))
A346308_list = list(islice(A346308_gen(),30)) # Chai Wah Wu, Aug 06 2022
A351415
Intersection of Beatty sequences for (1+sqrt(5))/2 and sqrt(5).
Original entry on oeis.org
4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, 46, 51, 53, 55, 58, 64, 67, 69, 71, 76, 80, 82, 84, 87, 93, 98, 100, 105, 111, 114, 116, 118, 122, 127, 129, 131, 134, 140, 145, 147, 152, 156, 158, 160, 163, 165, 169, 174, 176, 181, 187, 190, 192, 194, 199
Offset: 1
The two Beatty sequences are (1,3,4,6,8,9,11,12,14,...) and (2,4,6,8,11,13,15,17,...), with common terms forming the sequence (4,6,8,11,...).
-
z = 200;
r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}] (* A000201 *)
u1 = Take[Complement[Range[1000], u], z] (* A001950 *)
r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}] (* A022839 *)
v1 = Take[Complement[Range[1000], v], z] (* A108598 *)
Intersection[u, v] (* A351415 *)
Intersection[u, v1] (* A356101 *)
Intersection[u1, v] (* A356102 *)
Intersection[u1, v1] (* A356103 *)
A347467
Numbers h such that floor(k*sqrt(3)) = floor(h*sqrt(2)) for some k.
Original entry on oeis.org
1, 4, 6, 9, 11, 14, 16, 17, 18, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 36, 38, 39, 41, 43, 44, 46, 48, 49, 51, 53, 54, 55, 56, 59, 60, 61, 64, 65, 66, 68, 70, 71, 73, 76, 78, 81, 83, 86, 88, 91, 93, 96, 98, 99, 101, 103, 104, 105, 108, 109, 110, 113
Offset: 1
Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...)
Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...)
Intersection: (1,5,8,12,...), as in A346308.
a(2) = 4 because floor(3*sqrt(3)) = floor(4*sqrt(2)). (For each such h, there is only one such k.)
-
z = 200; r = Sqrt[2]; s = Sqrt[3];
u = Table[Floor[n r], {n, 0, z}]; (*A001951*)
v = Table[Floor[n s], {n, 1, z}]; (*A022838*)
w = Intersection[u, v] (*A346308*)
zz = -1 + Length[w];
Table[Ceiling[w[[n]]/r], {n, 1, zz}] (* A347467 *)
Table[Ceiling[w[[n]]/s], {n, 1, zz}] (* A347468 *)
A347468
Numbers k such that floor(k*sqrt(3)) = floor(h*sqrt(2)) for some h.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 57, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 95
Offset: 1
Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...)
Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...)
Intersection: (1,5,8,12,...), as in A346308.
a(2) = 3 because floor(3*sqrt(3)) = floor(4*sqrt(2)). (For each such k, there is only one such h.)
-
z = 200; r = Sqrt[2]; s = Sqrt[3];
u = Table[Floor[n r], {n, 0, z}]; (*A001951*)
v = Table[Floor[n s], {n, 1, z}]; (*A022838*)
w = Intersection[u, v] (*A346308*)
zz = -1 + Length[w];
Table[Ceiling[w[[n]]/r], {n, 1, zz}] (* A347467 *)
Table[Ceiling[w[[n]]/s], {n, 1, zz}] (* A347468 *)
Showing 1-4 of 4 results.
Comments