cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347551 Number of minimum dominating sets in the 2n-crossed prism graph.

Original entry on oeis.org

4, 51, 8, 170, 16, 476, 32, 1224, 64, 2992, 128, 7072, 256, 16320, 512, 36992, 1024, 82688, 2048, 182784, 4096, 400384, 8192, 870400, 16384, 1880064, 32768, 4038656, 65536, 8634368, 131072, 18382848, 262144, 38993920, 524288, 82444288, 1048576, 173801472
Offset: 2

Views

Author

Eric W. Weisstein, Sep 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Piecewise[{{17 n 2^((n - 3)/2), Mod[n, 2] == 1}, {2^((n/2) + 1), Mod[n, 2] == 0}}], {n, 2, 20}] (* Eric W. Weisstein, Feb 27 2025 *)
    CoefficientList[Series[(4 + 51 x - 8 x^2 - 34 x^3)/(1 - 2 x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Feb 27 2025 *)
  • PARI
    a(n) = if(n%2, 17*n*2^((n-3)/2), 2^((n/2)+1)) \\ Andrew Howroyd, Jan 18 2022

Formula

a(n) = 2^((n/2)+1) for n even.
From Andrew Howroyd, Jan 18 2022: (Start)
a(n) = 17*n*2^((n-3)/2) for n odd.
a(n) = 4*a(n-2) - 4*a(n-4) for n > 5.
G.f.: x^2*(4 + 51*x - 8*x^2 - 34*x^3)/(1 - 2*x^2)^2.
(End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 18 2022