A347551 Number of minimum dominating sets in the 2n-crossed prism graph.
4, 51, 8, 170, 16, 476, 32, 1224, 64, 2992, 128, 7072, 256, 16320, 512, 36992, 1024, 82688, 2048, 182784, 4096, 400384, 8192, 870400, 16384, 1880064, 32768, 4038656, 65536, 8634368, 131072, 18382848, 262144, 38993920, 524288, 82444288, 1048576, 173801472
Offset: 2
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..1000
- Eric Weisstein's World of Mathematics, Crossed Prism Graph
- Eric Weisstein's World of Mathematics, Minimum Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-4).
Programs
-
Mathematica
Table[Piecewise[{{17 n 2^((n - 3)/2), Mod[n, 2] == 1}, {2^((n/2) + 1), Mod[n, 2] == 0}}], {n, 2, 20}] (* Eric W. Weisstein, Feb 27 2025 *) CoefficientList[Series[(4 + 51 x - 8 x^2 - 34 x^3)/(1 - 2 x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Feb 27 2025 *)
-
PARI
a(n) = if(n%2, 17*n*2^((n-3)/2), 2^((n/2)+1)) \\ Andrew Howroyd, Jan 18 2022
Formula
a(n) = 2^((n/2)+1) for n even.
From Andrew Howroyd, Jan 18 2022: (Start)
a(n) = 17*n*2^((n-3)/2) for n odd.
a(n) = 4*a(n-2) - 4*a(n-4) for n > 5.
G.f.: x^2*(4 + 51*x - 8*x^2 - 34*x^3)/(1 - 2*x^2)^2.
(End)
Extensions
Terms a(11) and beyond from Andrew Howroyd, Jan 18 2022